
Pablo Rauzy
Candidature – Qualification aux fonctions de Maître de Conférence

B pablo.rauzy@inria.fr – r@uzy.me
Í http://pablo.rauzy.name/

26 ans, français

Composition du dossier
— Déclaration de candidature [2 pages]
— CV [2 pages]
— Présentation de mes travaux antérieurs d’enseignement et de recherche [4 pages]
— Liste de publications (celles avec ? sont jointes au dossier) [2 pages]

— Diplôme thèse :
— Attestation du diplôme de thèse [1 page]

(Télécom ParisTech ne délivrera pas le diplôme lui-même avant mars 2016)
— Procès verbal de soutenance de thèse [3 pages]
— Rapport de pré-soutenance de Pierre-Alain Fouque [3 pages]
— Rapport de pré-soutenance de Marie-Laure Potet [3 pages]

— Thèse :
— Avis de Sylvain Guilley (directeur de thèse) [2 pages]
— Contrat doctoral + mission d’enseignement [7 pages]

— Mission doctorale d’enseignement :
— Avis de Nizar Ouarti (responsable du cours de C) [1 page]
— Avis de Hacène Ouzia (responsable du cours de développement web) [1 page]
— Avis de François Pécheux (responsable enseignements informatique à Polytech’UPMC) [1 page]
— Attestation de service enseignement [1 page]
— Attestation d’encadrement du stage de M2 de Martin Moreau [1 page]

— Post-doc :
— Avis de Daniel Le Métayer (encadrant de post-doc) [1 page]
— Contrat de travail post-doc [4 pages]

— Publications jointes :
— Formally Proved Security of Assembly Code Against Power Analysis [26 pages]
— Countermeasures Against High-Order Fault-Injection Attacks on CRT-RSA [23 pages]
— Using Modular Extension to Provably Protect ECC Against Fault Attacks [39 pages]

http://pablo.rauzy.name/

2

Liste des étabs et labos d'exercice :
Post-doctorat (situation actuelle) :
* Recherche au CITI (EA 3720 Inria et INSA Lyon), dans l'équipe Privatics.

Pendant la thèse :
* Recherche au LTCI (UMR 5141 Télécom ParisTech et CNRS), dans l'équipe SEN.
* Enseignement à Polytech Paris-UPMC

Activités en matière d'enseignement :
* 32h + 32h de TP, niveau L3, "programmation en C".
* 32h + 40h de TP, niveau L3, "développement web (HTML, CSS, PHP, MySQL)".
* 54h UE complète (cours magistraux, TP, examens papier et machine, projet), niveau M1, "programmation orienté objet
et langage C++".
* Co-encadrement d'un stage de M2 recherche (6 mois).
Thème de recherche et mots clés :
Codes 32, 62, 63, 65, 73 : cryptographie, approches formelles, langages, systèmes embarqués, sécurité, preuve.

En thèse : approches formelles de l'étude et la conception de contre-mesures aux attaques physiques (par canaux auxiliaires
ou par injections de fautes) sur les systèmes cryptographiques.

En post-docorat : approches formelles de la protection de la vie privée.
Activités en matière d'administration et autres responsabilités collectives :
Avant la thèse : élu représentant des étudiants informatique de l'ENS pendant 3 ans, et élu représentant des étudiants
scientifiques de l'ENS au conseil d'administration de l'ENS pendant 1 an.

Pendant la thèse : gestion d'une UE à Polytech'UPMC.

déclare faire acte de candidature à la qualification.
Fait à le

Signature

Lyon 10/12/2015

Pablo Rauzy
Curriculum vitæ – Qualification aux fonctions de Maître de Conférence

B pablo.rauzyXXXinria.fr
Í http://pablo.rauzy.name/

Naissance : le 30 juillet 1989, à Marseille, nationalité française.
Adresse laboratoire : Laboratoire CITI (INSA Lyon / Inria),

56 bd Niels Bohr (CEI2),
69100 Villeurbanne.

Téléphone laboratoire : +33(0)4XXXXXXXX
Adresse personnelle : XX XX XXXXXXX,

69100 Villeurbanne
Téléphone personnel : +33(0)6XXXXXXXX

Parcours académique
2007 Baccalauréat série S option Sciences de l’ingénieur et spécialité Mathématiques, mention

assez bien, lycée Marseilleveyre (Marseille).

2007 - 2009 DEUG Mathématiques et Informatique, mention félicitation du jury, Université de la Méditer-
ranée (Marseille).

2009 - 2010 Licence Informatique, mention bien, École normale supérieure (Paris).
— Stage L3 de 3 mois avec Christophe Rippert, Karin Altisen, et Kévin Marquet au Vérimag

dans l’équipe Synchrone, mémoire intitulé “A formal approach to the development of
system services in embedded systems”.

2010 - 2012 Master Parisien de Recherche en Informatique, École normale supérieure (Paris).
— Stage M1 de 5 mois avec Clemens Grelck à l’Université d’Amsterdam dans le Computer

System Architecture group, mémoire intitulé “Implicit parallelization of code called from
an external and already parallelized environment”.

— Stage M2 de 6 mois avec Marc Pouzet à l’ENS dans l’équipe Parkas, mémoire intitulé
“Mixing continuous and discrete time in a synchronous language”.

2009 - 2012 Diplôme de l’ENS, École normale supérieure (Paris). Département informatique.

oct 2012 -
sept 2015

Thèse dans l’équipe SEN (Sécurité Électronique et Numérique) du département COMELEC
(Communication et Électronique) de Télécom ParisTech (Paris).

— Titre : “Méthodes logicielles formelles pour la sécurité des implémentations de systèmes
cryptographiques”.

— Laboratoire : LTCI (UMR 5141)
— Directeur de thèse : Sylvain Guilley, Professeur, Télécom ParisTech.
— Soutenue le 13 juillet 2015 à l’École normale supérieure (mention très honorable).
— Composition du jury :

– François Dupressoir, Chercheur, IMDEA Software Institute (examinateur),
– Pierre-Alain Fouque, Professeur, Univ. Rennes 1 (rapporteur),
– Karine Heydemann, Maître de Conférence, UPMC (examinatrice),
– David Naccache, Professeur, Univ. Panthéon-Assas (examinateur - président),
– Marie-Laure Potet, Professeure, Ensimag (rapporteuse),
– Mehdi Tibouchi, Chercheur, NTT (examinateur),
– David Vigilant, Chercheur, Gemalto (invité).

— Financement par une bourse de l’école doctorale ÉDITE (contrat doctoral + mission
d’enseignement à Polytech’UPMC).

— Stage de 1 mois à l’IMDEA (Madrid) dans l’équipe de Gilles Barthe.
— Co-encadrement (à 50%) avec Sylvain Guilley du stage de M2 de Martin Moreau, sur la

protection de calculs sur courbes elliptiques contre les attaques par injection de fautes ;
ce stage a abouti à un article ainsi qu’à un chapitre d’ouvrage. Martin Moreau est
maintenant en thèse à l’IMDEA avec Gilles Barthe.

oct 2015 -
sept 2016
(situation
actuelle)

Post-doc dans l’équipe-projet Inria Privatics du laboratoire CITI commun à l’INSA Lyon et
au centre Inria Grenoble–Rhône-Alpes (Lyon).

— Projet : “Formal Model for Privacy as Control”.
— Encadrant : Daniel Le Métayer.
— Financement par l’équipe-projet Inria.

http://pablo.rauzy.name/

Domaine de recherche
Je travaille sur la sécurité de l’information, notamment sur le respect et la protection de la vie privée. D’une
part, cela m’amène à m’intéresser à tous les niveaux de la sécurité : à la sécurité physique des implémentations
de systèmes embarqués, à l’analyse de vulnérabilités des systèmes d’information et des réseaux, à la cryptologie,
à la rétro-ingénierie de logiciels malveillants, et aux tests d’intrusion. D’une autre part, cela m’amène aussi à
m’intéresser aux systèmes qui manipulent des données personnelles, en particulier aux systèmes distribués tels
que les réseaux intelligents (smart grid, smart city, etc.), et de manière plus générale à l’Internet des objets.
Mon projet de recherche vise la protection de la vie privée par la mise en œuvre d’une approche offensive de la
sécurité, c’est à dire de garantir cette dernière en cherchant systématiquement les vulnérabilités des systèmes.
Pour cela je m’appuie sur une approche formelle de la preuve et de l’automatisation des méthodes de protection.

Production scientifique
Revues internationales à comité de lecture 2 Journal of Cryptographic Engineering (×2)
Chapitres d’ouvrage 1 publié chez CRC Press
Conférences internationales à comité de lecture 7 WISTP, IMACC, TGC, PPREW, FDTC, HOST,

COSADE
Conférences internationales à comité de lecture sans acte 4 COSADE, PROOFS (×2), TRUDEVICE
Articles soumis ou en préparation 2
Exposés lors de conférences internationales 6 dont 4 à l’étranger
Exposés lors de conférences nationales 1 à l’étranger
Séminaires 4 + 3 invitations à venir
Présentations de posters lors de conférences internationales 2 dont 1 à l’étranger

Logiciels 3 dont 2 sont utilisés par des chercheurs et dans
l’industrie

Responsabilités collectives
Membre des comités d’organisation des conférences COSADE 2013, COSADE 2014, et PROOFS 2015.
Relecteur pour les conférences COSADE 2014, SPACE 2015, et CARDIS 2015.
Relecteur externe pour le Journal of Cryptographic Engineering en 2013.

Enseignement
2012 - 2013
2013 - 2014

Programmation en C (32h + 32h) [N. Ouarti]. Encadrement des TP de langage C et
programmation modulaire, à Polytech’UPMC (∼15 étudiant·e·s en 3ème année).

2012 - 2013
2013 - 2014

Développement web (32h + 40h) [H. Ouzia]. Encadrement des TP de HTML, CSS, PHP, et
MySQL, à Polytech’UPMC (∼15 étudiant·e·s en 3ème année).

2013 - 2014 Introduction à GNU/Linux et à la ligne de commande (6h). Encadrement du “TP
Zéro” de familiarisation avec GNU/Linux, à Polytech’UPMC (∼30 étudiant·e·s en 1ère année).

2014 - 2015 Programmation orientée objet et langage C++ (54h). Responsable du cours entier (CM,
TP, projets, examens machine et papier), à Polytech’UPMC (∼30 étudiant·e·s en 4ème année).

Mes activités d’enseignement sont décrites en détails par la suite.

Compétences techniques
Programmation OCaml, C, Racket, C++, ASM Scriptage Bash, Python, Emacs Lisp

Web HTML, CSS, JS, PHP, SQL Graphisme Inkscape, GIMP
Outils LATEX, Emacs, Git, SVN, Tor, I2P Systèmes UNIX, GNU/Linux

Langues
Français langue maternelle Anglais lu / écrit / parlé

Mandats et affiliations
depuis 2008 Membre de l’April et de la FSF.
2008 - 2009 Élu représentant des étudiant·e·s en informatique au CÉVU de la Faculté de Sciences de Luminy.
2009 - 2012 Élu représentant des étudiant·e·s en informatique au conseil du Dpt informatique de l’ENS.
2011 - 2012 Élu représentant des étudiant·e·s scientifiques au Conseil d’administration de l’ENS.
depuis 2015 Co-fondateur et membre de l’association CAPSH qui porte le projet Dissemin (pour le dévelop-

pement du libre accès aux résultats de la recherche).

Pablo Rauzy
Travaux antérieurs – Qualification aux fonctions de Maître de Conférence

B pablo.rauzy@inria.fr – r@uzy.me
Í http://pablo.rauzy.name/

26 ans, français

Enseignement
Avant la thèse (total 18h)
Proposition et co-encadrement de petits projets de recherche des étudiant·e·s de L3 du cours “informatique
scientifique par la pratique” de David Naccache à l’ENS (3×2h d’encadrement pour chaque projet) :
Autonomic (2011-2012) : créer une version fonctionnelle du jeu Nomic, qui permet aux joueurs de faire évoluer
les règles du jeu, en se basant sur une construction de Quine permettant au programme de se réécrire lui-même.
Btrsync (2011-2012) : créer une version améliorée de l’outil de synchronisation de dossier rsync, optimisée pour
transférer le moins de données possible (en contrepartie de calculs plus conséquents au niveau de la source et
de la destination de la synchronisation). Le projet a abouti à la rédaction d’un article qui a été présenté à la
conférence TGC 2012 [ABB+12].
Paper laundry (2014-2015) : créer un outils permettant de retirer des PDF d’article de recherche les traces de
pistages laissées par les maisons d’édition, pour cela étudier les possibilités de stéganographie dans des PDF et
étudier la possibilité de “normaliser” la structure d’un PDF.

Mission doctorale d’enseignement à Polytech’UPMC (total 196h)
2012 - 2013
2013 - 2014

Programmation en C (32h + 32h).
J’ai été en charge deux ans (32h / an) des séances TP en groupes d’une quinzaine d’étudiant·e·s,
pour le cours enseigné par M. Ouarti en 3ème année (équivalent L3) de la filière “Électronique et
Informatique parcours Informatique Industrielle”. Les TPs ont couvert les bases de la program-
mation en C : structures de données, pointeurs, gestion de la mémoire, compilation modulaire
(Makefile).
La matériel pour ce cours (fiches de TP) a été fourni par M. Ouarti.

2012 - 2013
2013 - 2014

Développement web (32h + 40h).
J’ai été en charge deux ans (32h puis 40h) des séances de TP en groupe d’une quinzaine d’étu-
diant·e·s, pour le cours enseigné par M. Ouzia en 3ème année (équivalent L3) de la filière
“Agroalimentaire” (il s’agit d’un cours d’ouverture en informatique). Les TPs ont couvert les bases
du développement web et de la gestion de base de données en utilisant HTML, CSS, PHP et
MySQL.
Le matériel pour ce cours (fiches de TP) a principalement été fourni par M. Ouzia, à l’exception
de deux séances de TP pour lesquelles j’ai rédigé les sujets (consistant à leur faire faire en deux
séances un petit clone de Twitter) qui continuent d’être utilisés depuis. Les sujets que j’ai rédigés
sont disponibles sur http://pablo.rauzy.name/teaching.html#epu-tpweb.

2013 - 2014 Introduction à GNU/Linux et à la ligne de commande (6h).
Encadrement de deux groupes (3h par groupe) d’une trentaine d’étudiant·e·s arrivant à Polyte-
ch’UPMC pour leur “TP Zéro” de familiarisation avec l’environnement GNU/Linux des salles
informatiques de l’établissement, et introduction à la ligne de commande.

2014 - 2015 Programmation orientée objet et langage C++ (54h).
En troisième année de thèse j’ai demandé à être responsable d’un cours entier, par envie de
découvrir tous les aspects de la gestion d’un cours. François Pécheux, responsable des cours
d’informatique à Polytech’UPMC, a accepté de me confier le cours de programmation objet et
C++ de 4ème année (équivalent M1) de la filière “Électronique et Informatique parcours Systèmes
Embarqués” (une trentaine d’étudiant·e·s).
J’ai choisi de ne pas réutiliser le matériel des années précédentes et de proposer un cours entièrement
neuf créé par mes soins. Comme son intitulé l’indique, ce cours couvre la programmation en langage
C++ : différences avec le C, programmation orientée objet puis spécifiquement basée sur les
classes, surcharge des opérateurs, héritages, templates, exceptions, la STL, puis une bibliothèque
multimédia (la SFML). Les TPs ont servi à mettre en pratique les nouvelles notions de chaque
séance de cours tout en réutilisant les notions vues auparavant. Pour évaluer les étudiant·e·s, je leur
ai fait faire un projet de choix libre en groupe de deux ou trois, avec la contrainte que ce soit un jeu
graphique, un examen individuel sur machine (TP plus long et noté), ainsi qu’un examen sur papier.
Tout le matériel de cours est disponible sur http://pablo.rauzy.name/teaching.html#epu-cpp.

Co-encadrement (50%) d’un stage de M2 recherche
Pendant le dernier semestre de ma thèse j’ai eu l’opportunité de co-encadrer le stage de recherche de Martin
Moreau, un étudiant du M2 “Sécurité Fiabilité et Performance du Numérique” de l’UPMC (Paris 6).
Nous lui avons proposé de travailler sur la protection des algorithmes de cryptographie basés sur les courbes
elliptiques (ECC) contre les attaques physiques par injection de fautes, en réutilisant la technique dite d’“extension
modulaire” introduite par Shamir pour protéger CRT-RSA (c’est à dire RSA optimisé avec le théorème des reste

http://pablo.rauzy.name/
http://pablo.rauzy.name/teaching.html#epu-tpweb
http://pablo.rauzy.name/teaching.html#epu-cpp

chinois) contre ce même type d’attaques.
Le stage s’est extrêmement bien déroulé et a abouti à la rédaction d’un article encore en cours de préparation,
et d’un chapitre étendant les résultats obtenus sur l’ECC aux calculs de couplages, qui fera partie du livre
Handbook of Pairing Based Cryptography (Nadia El Mrabet et Marc Joye éditeurs, CRC Press Taylor and Francis
group) [RMG16].
Ce stage a été l’occasion pour Martin de confirmer son envie de poursuivre dans la recherche et il est maintenant
en thèse avec Gilles Barthe à l’IMDEA Software Institute, à Madrid.

Recherche
Stage L3 : 3 mois dans l’équipe Synchrone du laboratoire Verimag à Grenoble avec Christophe Rippert,
Karine Altisen et Kévin Marquet. Mémoire : “une approche formelle du développement de services systèmes dans
les systèmes embarqués temps réel”. Résultat principal : développement d’un ordonnanceur dynamique pour le
langage Lustre qui conserve les garanties temps réel de l’ordonnancement statique.
Stage M1 : 5 mois dans le groupe Computer Systems Architecture à l’université d’Amsterdam avec
Clemens Grelck. Mémoire : “la parallélisation implicite de code appelé depuis un environnement extérieur et déjà
parallélisé”. Résultat principal : redéveloppement de l’interface externe C du langage SaC (Single Assignment C,
fait pour la parallélisation implicite de calculs sur des tableaux) pour lui permettre de faire de la parallélisation
automatique même quand le code C qui s’interface avec le programme SaC contient déjà des threads, ce qui
n’était pas possible avant.
Stage M2 : 6 mois dans l’équipe Inria Parkas à l’ENS Ulm, avec Marc Pouzet. Mémoire : “le mélange de
temps continu et discret dans un langage synchrone”. Résultat principal : une analyse statique de Zélus, un
langage synchrone hybride (mixant temps discret et continu), qui détecte si une séquence infinie d’étapes discrètes
peut arriver entre deux phases continues. La présence d’un nombre fini d’étapes discrètes entre deux phases
continues est une condition nécessaire pour s’assurer que le temps avance pendant la simulation d’un système.

Thèse
Méthodes logicielles formelles pour la sécurité des implémentations de systèmes cryptographiques
Les implémentations cryptographiques sont vulnérables aux attaques physiques, et ont donc besoin d’en être
protégées. Bien sûr, des protections défectueuses sont inutiles. L’utilisation des méthodes formelles permet de
développer des systèmes tout en garantissant leur conformité à des spécifications données. Le premier objectif de
ma thèse, et son aspect novateur, est de montrer que les méthodes formelles peuvent être utilisées pour prouver
non seulement les principes des contre-mesures dans le cadre d’un modèle, mais aussi leurs implémentations,
étant donné que c’est là que les vulnérabilités physiques sont exploitées. Mon second objectif est la preuve
et l’automatisation des techniques de protection elles-mêmes, car l’écriture manuelle de code est sujette à de
nombreuses erreurs, particulièrement lorsqu’il s’agit de code de sécurité.
Les attaques physiques peuvent être classifiées en deux catégories distinctes. Les attaques passives, où l’attaquant
peut seulement lire l’information qui fuit par canaux auxiliaires (comme la consommation de courant ou les
émanations électromagnétiques). Et les attaques actives, où l’attaquant perturbe le système pour faire en sorte
de lui faire révéler des secrets via sa sortie standard. Par conséquent, j’ai poursuivi mes objectifs dans ces deux
cadres : sur une contre-mesure qui diminue les fuites par canaux auxiliaires, et sur des contre-mesures contre les
attaques par injection de faute.
Comme il existe déjà des propriétés rigoureuses de sécurité pour les protections contre les fuites par canaux
auxiliaires, mes contributions se concentrent sur l’exploitation de méthodes formelles pour la conception et
la vérification d’implémentations d’algorithmes protégés. J’ai développé une méthode de protection qui, étant
donné une implémentation, en génère une version améliorée qui a un rapport signal à bruit nul sur ses canaux
auxiliaires, grâce au fait que la fuite a été rendue constante (en particulier, la fuite ne dépend pas des données
sensibles) en utilisant la méthode dite du “double rail” (dual-rail with precharge logic). Dans l’intérêt de la
démonstration, j’ai aussi entrepris d’écrire un outil (paioli) qui automatise l’application de cette méthode sur un
code non sécurisé écrit en langage assembleur. Indépendemment, l’outil permet de prouver que la propriété de
fuite constante est toujours vérifiée pour une implémentation donnée, ce qui permet de vérifier systématiquement
le résultat de la méthode de protection, mais sert aussi de test de non-régression de sécurité en cas d’optimisation
manuel du code obtenu. À ma connaissance, paioli est le premier outil permettant de protéger automatiquement
une implémentation contre les fuites par canaux auxiliaires en équilibrant sa fuite de manière prouvable.
→ Les résultats de ce travail ont été présentés lors de la conférence internationale avec comité de lecture mais
sans actes PROOFS 2014 (à Busan, en Corée) [RGN14] puis publiés dans une revue internationale avec comité
de lecture [RGN15].
À l’inverse, la définition même des objectifs de sécurité n’était pas clairement établie pour les attaques par
injection de faute lorsque j’ai commencé ma thèse. Les propriétés de sécurité à prouver n’ayant même pas été
formellement énoncées, beaucoup de contre-mesures ont été publiées sans preuve. C’est seulement lors de ma
thèse que les “conditions de succès d’attaque” ont été introduites.
En conséquence, la première question a été d’évaluer les contre-mesures existantes par rapport à ces conditions de
succès d’attaque. À cette fin, j’ai développé une méthode, basée sur l’évaluation symbolique par réécriture d’arbre

en suivant les règles de l’arithmétique modulaire, qui permet la couverture complète des fautes possibles sur un
algorithme (implémentant une contre-mesure) et le calcul de leurs effets. J’ai implémenté cette méthode dans un
outil (finja), qui m’a permis (ainsi qu’à d’autres chercheur·e·s) de vérifier et prouver certaines contre-mesures, de
retrouver des attaques connues, et aussi d’en découvrir de nouvelles.
→ Les résultats de ce travail ont été présentés lors de la conférence internationale avec comité de lecture mais
sans actes PROOFS 2013 (à Santa Barbara, aux États-Unis) [RG13] puis publiés dans une revue internationale
avec comité de lecture [RG14a].
La seconde question portait sur la minimalité des contre-mesures. J’ai entre autres étudié en profondeur l’une
des contre-mesures de l’état de l’art (développée chez Gemalto par David Vigilant). Le résultat de cette étude
formelle utilisant finja a été la simplification drastique de la contre-mesure, aussi bien au niveau de la longueur
du code que de la nécessité de nombres aléatoires (qui sont coûteux à générer), et ce sans affecter ses propriétés
de sécurité. En effet, avec mes simplifications, la contre-mesure est passée de 9 à 3 vérifications d’invariants et
ne nécessite plus qu’un seul nombre aléatoire, contre 5 auparavant. Ce travail a montré la valeur ajoutée de
l’approche formelle par rapport à l’ingénierie par essais-erreurs qui a été jusqu’à présent la méthode principale
de développement de contre-mesures.
→ Les résultats de ce travail ont été présentés et publiés dans dans la conférence internationale avec comité de
lecture PPREW 2014 (à San Diego, aux États-Unis) [RG14b].
Les contre-mesures existantes revendiquent de protéger contre une ou parfois deux fautes. Cependant, des
attaques utilisant plus de deux fautes ont vu le jour, aussi bien en pratique qu’en théorie. Cependant, comme
finja m’a permis de le découvrir, les contre-mesures se revendiquant du second ordre (résistantes à deux fautes)
ne l’étaient pas dans le modèle de faute, plus général que celui des auteurs de ces contre-mesures, que j’avais
défini. La troisième question était alors de concevoir une nouvelle contre-mesure d’ordre supérieur, capable de
résister à un nombre arbitraire de fautes. À son tour, la conception d’une nouvelle contre-mesure soulève la
question de ce qui fait réellement fonctionner une contre-mesure. Pour tenter de répondre à cette question, j’ai
classifié les contre-mesures existantes en essayant d’extraire les principes de protection des techniques employées.
Ce travail de catégorisation m’a permis de comprendre l’essence d’une contre-mesure, et, en me basant dessus,
de proposer une recette de conception de contre-mesure pouvant résister à un nombre arbitraire (mais fixé) de
fautes.
→ Les résultats de ce travail ont été présentés et publiés dans la conférence internationale avec comité de lecture
FDTC 2014 (à Busan, en Corée) [RG14c].
J’ai aussi remarqué que toutes les contre-mesures que j’ai étudiées sont des variantes d’optimisation d’une même
technique de base qui consiste à vérifier l’intégrité du calcul en utilisant une forme de redondance homomorphe.
Cette technique est indépendante de l’algorithme auquel elle s’applique, et aussi de la condition de succès
d’attaque, puisqu’elle repose entièrement sur des propriétés des structures mathématiques dans lesquelles se
trouve les données sensibles, c’est à dire l’arithmétique modulaire. J’ai donc proposé une propriété de résistance
face aux attaques par injection de faute qui dépasse la notion de condition de succès d’attaque. La quatrième
question a été d’appliquer cette technique de protection à tous les calculs de cryptographie asymétrique, puisqu’ils
travaillent tous sur des données mathématiques similairement structurées. Dans cette optique, j’ai développé
une abstraction des calculs de cryptographie asymétrique qui permet d’appliquer simplement la méthode de
protection par redondance. J’ai formellement défini cette méthode en définissant une transformation de code
par réécriture que j’ai prouvée correcte. J’ai écrit un compilateur (enredo) qui automatise cette transformation
et a permis d’obtenir des implémentations protégées d’algorithmes pour lesquels aucune contre-mesure n’a
été publiées mais qui sont déjà victimes de nombreuses attaques par injections de fautes, comme les calculs
de multiplications scalaire sur courbe elliptiques ou les algorithmes de couplage. Un avantage additionnel du
compilateur enredo est de permettre d’étudier le compromis entre sécurité et temps de calcul.
→ Les résultats de ce travail ont été rédigés dans un article [RGM+] ainsi que dans un chapitre d’ouvrage [RMG16].
Post-doctorat
Formal Model for Privacy as Control
Plutôt que le “droit d’être laissé tranquille”, comme originellement défini par Samuel Warren et Louis Brandeis,
le respect et la protection de la vie privée (privacy) est de plus en plus vu, dans la société du tout numérique,
comme le contrôle que peut exercer un individu sur ses données personnelles. La mode est d’ailleurs à l’inclusion
d’exigences de respect et de protection de la vie privée dès les premières phases de conception d’un produit ou
service, en suivant l’approche “privacy by design”. Cependant, alors même que les notions de “privacy as control”
et “privacy by design” sont omniprésentes dans la littérature, aucune définition claire de leur signification n’existe
à ce jour. En conséquence ces notions peuvent être interprétées de différentes manières et il est difficile de rendre
leur mise en pratique systématique ou mesurable. Par exemple, la littérature informatique en matière de vie
privée se concentrent principalement autour de deux sujets : les “policy languages” qui permettent d’exprimer
des politiques de gestions des données personnelles, et le contrôle d’accès qui a développé des variantes comme
les “role-based access control”, le “purpose-based access control”, ou encore le “risk-adaptive access control”
pour mettre en œuvre la notion de “privacy as control”, sans jamais vraiment définir ce que c’est réellement.
Il ressort cependant de la littérature, des pratiques, et de la loi (vue au travers des recommandations de mise en
application données par la CNIL), que le contrôle d’un individu sur ses données personnelles s’organise autour de

trois axes : l’utilisation de ses données personnelles, le consentement à l’utilisation de ses données personnelles
par d’autres, et la connaissance qu’il·le a de l’utilisation qui est faites de ses données personnelles.
Je travaille donc en ce moment à la mise au point d’un modèle formel du contrôle se basant sur ces trois axes.
Plus précisément, je suis en train de concevoir un langage de modélisation du contrôle des utilisateurs sur leurs
données personnelles dans un système d’information. Le but étant de créer un outil qui prendrait en entrée la
description d’un système dans ce langage, ainsi qu’un ensemble de critères définissant ce que serait un “contrôle
satisfaisant”, et procéderait à une vérification automatique de la validité de ces critères dans tous les états
du système décrit. Le cas échéant, l’outil permettrait de tracer d’où vient la perte de contrôle pour pouvoir y
pallier, ou du moins émettre des recommandations d’amélioration du système étudié, que ce soit au niveau de
ses spécifications ou de moyen de contrôles externes.
Ce modèle formel et l’outil qui l’implémente, pourront servir de socle à la création d’une mesure du niveau de
respect et de protection de la vie privée qu’offre un système donné, et donc de quantifier le risque de perte de
contrôle, ou encore d’évaluer l’efficacité de méthode de protection du contrôle. À son tour, cette mesure devrait
permettre d’extraire des principes généraux de bonnes pratiques vis-à-vis du contrôle des utilisateurs sur leurs
données personnelles, et donc de définir plus précisément la notion de “privacy by design” afin de rendre plus
facile l’implémentation de produits ou services respectueux et protecteur de la vie privée.
Ce projet venant juste de démarrer (octobre 2015) il n’y a pas encore de résultat publié.

Collaborations internationales
Pendant ma thèse je suis allé travailler un mois à Madrid avec Gilles Barthe dans son groupe Computer-
Assisted Cryptography à l’IMDEA Software Institute. J’ai collaboré avec eux sur le démarrage de mon
travail de formalisation et d’automatisation (enredo) de la réécriture de code de calculs arithmétiques (type
cryptographie asymétrique) pour la protection automatique contre les attaques par injections de fautes. C’est à
la suite de ce travail que j’ai encadré moi-même un stagiaire de M2 (Martin Moreau, qui est maintenant en thèse
avec Gilles Barthe à l’IMDEA) pour poursuivre cette idée et la mettre en pratique, ce qui a donné naissance à la
rédaction d’un article [RGM+], ainsi que d’un chapitre d’ouvrage [RMG16].
J’ai aussi collaboré pendant ma thèse avec Ágnes Kiss et Juliane Krämer de la Technische Universität Darmstadt
en Allemagne, à la rédaction d’un article [KKR+] faisant suite à un travail qu’elles ont effectué en utilisant une
des méthodes que j’ai développées pendant ma thèse ainsi que l’outil (finja) que j’ai écrit pour l’implémenter.

Dissémination
Publications : revues internationales avec comité de lecture (×2), conférences internationales avec comité de
lecture (×7), conférences internationales sans comité de lecture (×3), chapitre d’ouvrage (×1).
Viennent s’ajouter 3 articles en cours de préparation.
Exposés : conférences internationales avec comité de lecture (×6), conférence nationale (×1), séminaires de
recherche (×4 dont 2 invités, sans compter les présentations dans mon propre laboratoire), sessions posters de
conférences internationales (×2).
Les présentations est posters se trouvent sur ma page web : http://pablo.rauzy.name/research.html.

Projets
Enseignement
J’aimerais beaucoup enseigner les bases fondamentales de l’informatique en licence : mathématiques discrètes,
structures de données, logique, automates, fonctions récursives, lambda calcul, machine de Turing, etc.
Faire des cours sur des langages de programmation (à tous niveaux) m’intéresse aussi : faire un cours de C,
enseigner un langage fonctionnel (Scheme ou OCaml par exemple), ou encore des paradigmes de programmation
moins courants comme la programmation synchrone (Lustre), ou la programmation logique (Prolog).
Je suis aussi motivé à l’idée d’enseigner la programmation système (POSIX, pas Windows) et réseau bas-niveau.
Enfin, faire des cours sur des sujets orienté sécurité, en particulier en lien avec mes recherches, me plairait aussi
énormément bien sûr, mais plutôt en niveau master.

Recherche
Mes intérêts scientifiques se portent sur la sécurité de l’information, notamment dans le but du respect et de la
protection de la vie privée. Ce domaine m’intéresse à tous les niveaux, de la sécurité physique des implémentations
de systèmes embarqués jusqu’à l’ingénieurie sociale, en passant par la cryptologie, la sécurité des systèmes et
réseaux, la rétroingénieurie, l’analyse de vulnérabilité et de malware, et le test d’intrusion.
Je crois à la fois fermement en l’efficacité de l’approche offensive de la sécurité et en la nécessité de l’approche
formelle pour la preuve et l’automatisation des méthodes de protection des systèmes.
Mon projet est de développer de nouveaux modèles formels permettant d’une part la mise en œuvre de automatisée
de découverte de vulnérabilité, et d’autre part la preuve de contre-mesure et si possible l’automatisation de la
protection.

http://pablo.rauzy.name/research.html

Pablo Rauzy
Publications et logiciels – Qualification aux fonctions de Maître de Conf.

B pablo.rauzy@inria.fr – r@uzy.me
Í http://pablo.rauzy.name/

26 ans, français

Des ? marquent les trois articles principaux qui sont inclus dans mon dossier de candidature. Les articles
pour lesquels les noms de auteurs sont classés par ordre alphabétique plutôt que par ordre de contributions
sont marqués d’un α. Toutes mes publications sont disponibles en version intégrale depuis ma page web :
http://pablo.rauzy.name/research.html#publications

Revues internationales avec comité de lecture
[RGN15] Pablo Rauzy, Sylvain Guilley, Zakaria Najm. Formally Proved Security of Assembly

Code Against Power Analysis. Journal of Cryptographic Engineering, issue à paraître, 2015.
DOI: 10.1007/s13389-015-0105-2. ?

[RG14a] Pablo Rauzy, Sylvain Guilley. A Formal Proof of Countermeasures Against Fault In-
jection Attacks on CRT-RSA. Journal of Cryptographic Engineering, Volume 4 Issue 3,
2014. DOI: 10.1007/s13389-013-0065-3.

Chapitres d’ouvrage
[RMG16] Pablo Rauzy, Martin Moreau, Sylvain Guilley. Protecting Pairings-Based Cyrptography

Against Fault Injection Attacks. Chapitre du livre Handbook of Pairing Based Cryptography,
Nadia El Mrabet et Marc Joye éditeurs, CRC Press Taylor and Francis group, à paraître.

Conférences internationales avec comité de lecture
[RNR+15] Lionel Rivière, Zakaria Najm, Pablo Rauzy, Jean-Luc Danger, Julien Bringer, Laurent Sauvage.

High Precision Fault Injections on the Instruction Cache of ARMv7-M Architec-
tures. HOST 2015: IEEE International Symposium on Hardware-Oriented Security and Trust.
DOI: 10.1109/HST.2015.7140238.

[RG14c] Pablo Rauzy, Sylvain Guilley. Countermeasures Against High-Order Fault-Injection
Attacks on CRT-RSA. FDTC 2014: 11th IACR Workshop on Fault Diagnosis and Tolerance
in Cryptography. DOI: 10.1109/FDTC.2014.17. ?

[RG14b] Pablo Rauzy, Sylvain Guilley. Formal Analysis of CRT-RSA Vigilant’s Countermeasure
Against the BellCoRe Attack. PPREW 2014: 3rd SIGPLAN Program Protection and
Reverse Engineering Workshop. DOI: 10.1145/2556464.2556466.

[ABB+12] Antoine Amarilli, Fabrice Ben Hamouda, Florian Bourse, Robin Morisset, David Naccache,
Pablo Rauzy. From Rational Number Reconstruction to Set Reconciliation and File
Synchronization. TGC 2012: 7th International Symposium on Trustworthy Global Computing.
DOI: 10.1007/978-3-642-41157-1_1. α (article invité)

[ANR+11] Antoine Amarilli, David Naccache, Pablo Rauzy, Emil Simion. Can a Program Reverse-
Engineer Itself ?. IMACC 2011: 13th IMA International Conference on Cryptography and
Coding. DOI: 10.1007/978-3-642-25516-8_1. α (article invité)

[AMN+11] Antoine Amarilli, Sascha Müller, David Naccache, Daniel Page, Pablo Rauzy, Michael Tunstall.
Can Code Polymorphism Limit Information Leakage ?. WISTP 2011: Workshop in
Information Security Theory and Practice. DOI: 10.1007/978-3-642-21040-2_1. α (article invité)

Les articles [AMN+11], [ANR+11], et [ABB+12] correspondent à des travaux effectués avant ma thèse.

Conférences internationales avec comité de lecture mais sans actes
[RG15] Pablo Rauzy, Sylvain Guilley. Towards Generic Countermeasures Against Fault In-

jection Attacks. TRUDEVICE 2015: 3rd Workshop on Trustworthy Manufacturing and
Utilization of Secure Devices.

[RGN14] Pablo Rauzy, Sylvain Guilley, Zakaria Najm. Formally Proved Security of Assembly Code
Against Power Analysis. PROOFS 2014: 3rd Workshop on Security Proofs for Embedded
Systems. Sélectionné pour soumission en version étendue au Journal of Cryptographic Engineering.

[RG13] Pablo Rauzy, Sylvain Guilley. A Formal Proof of Countermeasures Against Fault Injec-
tion Attacks on CRT-RSA. PROOFS 2013: 2nd Workshop on Security Proofs for Embedded
Systems. Sélectionné pour soumission en version étendue au Journal of Cryptographic Engineering.

[RGD13] Pablo Rauzy, Sylvain Guilley, Jean-Luc Danger. Software Countermeasures Against DPA
Attacks: Masking vs Dual-Rail with Precharge Logic. COSADE 2013: 4th International
Workshop on Constructive Side-Channel Analysis and Secure Design. (article court)

http://pablo.rauzy.name/
http://pablo.rauzy.name/research.html#publications

Articles en préparation
[RL] Pablo Rauzy, Daniel Le Métayer. Modeling Privacy as Control.

[RGM+] Pablo Rauzy, Sylvain Guilley, Martin Moreau, Zakaria Najm. Using Modular Extension to
Provably Protect ECC Against Fault Attacks. ?

[KKR+] Ágnes Kiss, Juliane Krämer, Pablo Rauzy, Jean-Pierre Seifert. Algorithmic Countermea-
sures Against Fault Attacks and Power Analysis for RSA-CRT.

Logiciels
paioli Cet outil permet de protéger du code assembleur contre les attaques par analyse de consommation

de courant (comme la DPA ou la CPA) et de formellement prouver l’efficacité de la protection.
Pour cela, il implémente l’insertion automatique d’une contre-mesure d’équilibrage connu sous
le nom de DPL (dual-rail with precharge logic) dans du code assembleur “bitslicé” (typiquement
sur un algorithme de chiffrement par bloc). Indépendemment, il est capable, en exécutant
symboliquement le code un peu à la manière de l’interprétation abstraite, de vérifier statiquement
si la consommation de courant d’un code assembleur donné est correctement équilibré au regard
d’une modèle de fuite (typiquement la distance de Hamming des mises à jour de valeurs, et le
poids de Hamming des valeurs).
La création de cet outil et les résultats obtenus avec ont été publiés [RGN14,RGN15].
De plus, une version protégée de l’algorithme de chiffrement present qui a été obtenue
avec paioli est actuellement utilisée et étudiée dans le groupe Microsystems à la Nanyang
Technological University de Singapoure.
Développé à 100% par moi. Code source et exemples disponibles sous licence CeCILL sur
http://pablo.rauzy.name/sensi/paioli.html.

finja Cet outil permet l’analyse formelle de contre-mesure contre les attaques par injection de fautes
de type BellCoRe sur les algorithmes de cryptographie asymétrique du type de CRT-RSA. Il
utilise les règles de l’arithmétique modulaire pour faire de l’évaluation symbolique par réécriture,
ce qui permet une couverture complète des fautes possibles dans un modèle d’attaque donné
(fautes aléatoires et/ou à zéro, permanente et/ou transiente, nombre de fautes) afin de prouver
la résistance d’une contre-mesure en fonction d’une condition de succès d’attaque.
La création de cet outil et les résultats obtenus avec ont donnés lieu à trois publica-
tions [RG14a,RG14b,RG14c]. L’outil et les résultats qu’il a permis ont été apprécié de la
communauté scientifique, par exemple pour la simplification des codes et la diminutions de la
quantité de nombres aléatoires (coûteux à générer) nécessaires dans les contre-mesures de l’état
de l’art, comme celles de Aumullër et al. (Infineon) et de Vigilant (Gemalto).
Cet outil a été réutilisé par Ágnes Kiss, Juliane Krämer, et Jean-Pierre Seifert de TU Darmstadt
en Allemagne pour étudier formellement d’autres types de contre-mesures pour CRT-RSA que
celles que j’ai étudié moi. Leur travail a abouti à un article sur lequel nous sommes en train de
collaborer [KKR+].
Développé à 100% par moi. Code source et exemples disponibles sous licence CeCILL sur
http://pablo.rauzy.name/sensi/finja.html.

enredo Cet outil permet de protéger les algorithmes de cryptographie asymétrique contre les attaques
par injection de faute. Il applique une transformation de code (sur du pseudo-code, mais peut
sortir du Python ce qui permet d’effectuer des tests) prouvée correcte, qui insère la contre-
mesure prouvée correcte appelée extension modulaire qui permet à faible coût d’introduire une
redondance dans le calcul, et ainsi de vérifier son intégrité.
Contrairement aux deux précédents, la principale description de cet outil se trouve uniquement
dans ma thèse (chapitre 0x8). Un article se basant sur les résultats de cet outil est en cours de
préparation [RGM+], et un chapitre d’ouvrage [RMG16] va paraître.
L’écriture de cet outil a été démarré lors de mon stage à l’IMDEA Software Institute avec
Gilles Barthe.
Développé à 100% par moi. Code source et exemples disponibles sous licence CeCILL sur
http://pablo.rauzy.name/sensi/enredo.html.

http://pablo.rauzy.name/sensi/paioli.html
http://pablo.rauzy.name/sensi/finja.html
http://pablo.rauzy.name/sensi/enredo.html

Rapport sur le manuscrit
”Formal Software Methods for Cryptosystems Implementation Security”

présenté par Pablo Rauzy pour l’obtention
du doctorat de Telecom ParisTech

Pierre-Alain Fouque

22 juin 2015

Les attaques par canaux auxiliaires sont des attaques très efficaces contre les implé-
mentations d’algorithmes cryptographiques. Elles permettent en temps raisonnable de
retrouver des éléments secrets en exploitant des informations complémentaires sur des
variables internes du calcul. En cryptographie classique, l’adversaire ne peut pas avoir
accès à ces informations, mais ce type d’attaque est réalisable quand les composants
cryptographiques sont embarqués dans de petits dispositifs. Dans certains cas, il est
possible d’injecter une erreur pendant un calcul qui s’effectue dans un composant élec-
tronique ou un processeur embarqué, en utilisant un rayonnement électromagnétique
ou un laser. L’exploitation de la sortie de l’algorithme fautée et non fautée permet bien
souvent de retrouver la clé secrète. C’est le cas pour l’algorithme de calcul rapide de la
fonction RSA qui utilise le théorème des restes chinois (CRT) et qui permet de gagner
un facteur environ 4 dans le temps de calcul.

Dans ce manuscrit Pablo Rauzy présente des contributions originales à la recherche
d’attaque par fautes contre les implémentations cryptographiques de schémas à clé pu-
blique et en particulier les implémentations de l’algorithme RSA-CRT. Il décrit aussi
comment se protéger contre ces attaques. Enfin, un outil pour diminuer l’information
qui fuit d’une implémentation est présenté. Les techniques utilisées dans cette thèse
sont issus des méthodes formelles afin d’étudier directement les implémentations cryp-
tographiques de façon exhaustive.

Travaux

Dans le premier chapitre de cette thèse, Pablo Rauzy décrit un outil appelé paioli
destiné à compiler du code assembleur en code assembleur plus sûr contre les attaques
par canaux auxiliaires par analyse de courant. Ces attaques exploitent la variation
de consommation de puissance quand un transistor passe de l’état 0 à 1. Ainsi, en
enregistrant cette variation physique, il est possible d’obtenir le poids de Hamming
de certaines variables du calcul. En matériel, une contremesure consiste à utiliser du

1

matériel qui ne fuit pas en poids de Hamming. Il est possible de coder par exemple
l’état 0 avec deux bits (01) et l’état 1 avec (10) de sorte que la consommation soit
constante. L’idée de l’outil paioli consiste à simuler de façon logicielle ces mécanismes
afin de diminuer l’information obtenue par l’adversaire. Les expérimentations sont très
convainquantes sur un processeur bien connu pour fuir selon ce modèle. L’outil permet
de compiler du code assembleur vers une implémentation plus sûre.

Plusieurs chapitres qui suivent dans le manuscrit de Pablo étudient la sécurité des
attaques par fautes contre l’algorithme RSA-CRT. Pablo a développé l’outil finja qui
étudie de façon exhaustive les fautes randoms et qui mettent une variable à zéro dans
plusieurs implémentations de l’algorithme haut-niveau de l’algorithme RSA-CRT (c’est-
à-dire qu’il ne rentre pas dans le détail des appels de fonction d’exponentiation mo-
dulaires ou de multiplications modulaires). Cet outil permet d’analyser la sécurité de
nombreuses contre-mesures. Les résultats sont très remarquable et en particulier, Pablo
a été capable de retrouver automatiquement certaines attaques, d’en découvrir de nou-
velles et de proposer des contremesures plus efficaces car certains tests ont été enlevés
car il ne servait à rien. Les tests sont une parade efficace pour lutter contre les attaques
par fautes et Pablo a analysé les contremesures proposées par Shamir, Ausmuller et
al., Vigilant et Coron et al.. L’outil effectue une recherche exhaustive sur les différentes
variables d’un calcul, propage ces contraintes et vérifie si une condition de faute qui
mène à une attaque est vérifiée. Les attaques recherchées sont du type Bellcore Attack
et permettent de retrouver les facteurs secrets du module RSA avec un simple calcul de
pgcd. Les résultats sont impressionnants car dans ce domaine les attaques étaient dé-
couvertes à la main et de nombreuses erreurs ont été commises dans les contremesures
proposées.

Enfin, Pablo s’est intéressé dans ce manuscrit à proposer une contremesure contre
les attaques par fautes pour la cryptographie à clé publique. La contremesure est dans
la suite des contremesures proposées pour sécuriser l’algorithme RSA-CRT en utilisant
de la redondance. Les calculs ne sont pas seulement effectués modulo p et q, mais
modulo pr et qr avec r un petit entier, ce qui permet de vérifier modulo r si une faute
est introduite. Pablo a généralisé ce mécanisme pour les calculs sur un corps fini très
utile en cryptographie qui utilise les courbes elliptiques par exemple. Il a développé
un compilateur qui prend en entrée une implémentation et retourne un code protége
en incluant la contremesure de façon automatique. Ensuite, plusieurs tests ont été fait
afin de vérifier expérimentalement la résistance des implémentations. Ce travail est très
prometteur et démontre la puissance des techniques développées par Pablo Rauzy.

Contributions

Les contributions de Pablo Rauzy sont nombreuses et ont été publiées dans des
conférences internationales importantes dans son domaine de recherche :

1. l’outil paioli qui permet de protéger les implémentations contre les attaques
passives par canaux auxiliaires en émulant les techniques développées dans le

2

protocole Dual-rail with Precharge Logic (DPL) pour équilibrer en consomma-
tion la fuite d’information et qui a été publié dans la conférence internationale
PROOFS 2014 et au journal of Cryptographic Engineering (JoCE).

2. L’outil finja qui a été développé pour rechercher des attaques par fautes contre
certaines implémentations de l’algorithme RSA-CRT et présenté à PROOFS
2013 et une extension à PPREW 2014.

3. Des contremesures ont été présentées et analysées à FDTC 2014 et en soumission
journal actuellement.

4. L’outil enredo de contremesure universelle et générique pour protéger les im-
plémentations de cryptographie à clé publique en utilisant la technique dite de
l’entanglement. Ce travail est en soumission actuellement.

D’autres contributions n’ont pas été intégrées dans le manuscrit mais témoigne de
son activité de recherche multiple avant thèse et actuelle.

Conclusion

Le manuscrit de Pablo Rauzy présente de nombreuses analyses à la fois en concep-
tion et en cryptanalyses très intéressantes en exploitant la puissance des méthodes
formelles quand les contremesures de l’algorithme RSA-CRT utilisent de plus en plus
de tests et deviennent complexes.

En conclusion, il s’agit d’une excellente thèse qui étudie la sécurité des implémen-
tations de l’algorithme RSA-CRT en développant trois outils utilent aux concepteurs.
Il est exceptionnel que les étudiants développent autant d’outil de ce niveau dans une
thèse. Par conséquent, je donne un avis très favorable à la soutenance.

Pierre-Alain Fouque

3

Lettre de Recommandation

Lettre de Recommandation Pablo Rauzy

Nizar Ouarti

17 Novembre 2015

Pablo Rauzy a enseigné à Polytech’ UPMC plusieurs années durant lesquelles nous
avons eu à interagir. Durant ces années là, j’avais pris la responsabilité du placement des
moniteurs de Polytech et le retour des élèves ainsi que des professeurs a été positif. Il a
notamment donné des TP pour un cours que j’animais et j’ai pu moi même être témoin
de son implication. L’ensemble des retours de l’équipe pédagogique est positif, il a passé
du temps pour préparer et expliquer au mieux les cours et TP qu’il a dû aborder. Je
pense que Pablo à la fibre pédagogique et aime passer du temps avec les étudiants. Je
pense donc qu’il ferait un très bon Mâıtre de conférence.

Le 17 Novembre 2015,

Nizar Ouarti Mcf IPAL, UPMC

1

Laboratoire d’Informatique de Paris 6

Université Pierre et Marie Curie – CNRS (UMR 7606)

LIP6 - Laboratoire d’Informatique de Paris 6 (UMR 7606)

UPMC – 4, Place Jussieu – Boite courrier 169
75252 Paris cedex 05 – France

Secrétariat : Tél. : +33 1 44 27 47 21- +33 1 44 27 47 22
Fax : +33 1 44 27 70 00

e-mail : Prenom.Nom@lip6.fr - web : www.lip6.fr

François Pêcheux
Université Pierre et Marie Curie, Laboratoire LIP6/SOC/CIAN
Tour 25-24, 4ème Bureau A420
4, Place Jussieu
75252 PARIS Cedex 05
Tel : 01 44 27 52 53
Courriel : francois.pecheux@lip6.fr

 Paris, le 21/11/15

Objet : Lettre de recommandation pour M. Pablo Rauzy

Pour valoir ce que de droit

Madame, Monsieur,

Je, soussigné François Pêcheux, Professeur à l’UPMC, déclare connaître M. Pablo Rauzy depuis
Septembre 2013, date de ma prise de fonction comme responsable de la matière Informatique à l’Ecole
Polytechnique Universitaire (EPU) Polytech Paris UPMC.

Depuis Octobre 2012, M. Rauzy est intervenu en tant que moniteur 27ème section dans de nombreux
modules informatiques dispensés à l’Ecole. Il a ainsi encadré pendant deux ans des Travaux Pratiques de
programmation en C pour une formation Electronique-Informatique en alternance (3ème année), ainsi que toute
une formation de programmation web aux Elèves des spécialités Agro-Alimentaire et Matériaux (3ème année).
Ses deux premières années se sont très bien passées, et les élèves ont été satisfaits par sa pédagogie et son
investissement. Pour toutes ces raisons, en 2014, je lui ai entièrement confié (à sa demande) un cours complet
de programmation C++ à destination de la formation initiale en Electronique-Informatique, 4ème année, qui a
également donné entière satisfaction.

J’ai pu me rendre compte au cours de ces années à quel point M. Rauzy est quelqu’un de sérieux, de
fiable et de motivé, qui sait tirer le meilleur parti de ses connaissances et en faire profiter les élèves qu’il
encadre. Il a parfaitement compris comment notre Ecole fonctionne et a toujours entretenu d’excellents rapports
avec ses collègues et les responsables pédagogiques et administratifs.

Je soutiens donc sans aucune réserve sa candidature comme Maître de Conférences.

François Pêcheux
 Professeur UPMC/LIP6/SoC/CIAN

Paris, le 23 septembre 2015

Sylvain GUILLEY,

Professeur à Télécom ParisTech.

Objet : Attestion de co-encadrement d'un stage M2.

Ce document atteste que Pablo Rauzy a co-encadré pendant sa thèse de doctorat à

TELECOM-ParisTech le stage de recherche de Martin Moreau, étudiant en Master 2 à l'UPMC,

dans le cadre de la spécialité « Sécurité Fiabilité et Performance du Numérique ». Le stage portait

sur la définition d'un modèle formel pour une contremesure dite d'« extension de module »

permettant de réaliser des calculs sur des grands nombres avec une redondance, permettant ainsi

la détection d'éventuelles erreurs.

Ce stage s'est très bien déroulé. A la fois le stagiaire a pu confirmer son goût pour la

recherche (il va poursuivre son cursus par une thèse de doctorat auprès de l'IMDEA Software

Institute à Madrid), et les résultats scientifiques obtenus sont novateurs. Par exemple, nous avons

porté une protection (dite de Shamir) de RSA aux courbes elliptiques, qui nécessitent des calculs

d'inversion modulaire. Cette étape peut conduire à des divisions par zéro si elle est réalisée de

manière aveugle dans des anneaux tels que Zpr. Grâce au travail de M. Moreau, ce problème a été

résolu en remplaçant l'inversion modulaire par une exponentiation. De plus, la protection

appliquée à un calcul de multiplication scalaire sur courbe elliptique a été portée vers la

bibliothèque mini-GMP, et programmée dans une carte d'évaluation ARM Cortex M4. Ce stage

débouche sur la préparation d'un article à soumettre à la conférence PKC (Public Key

Cryptography, workshop de l'IACR – International Association for Cryptology Research), et d'une

partie d'un livre sur la protection des algorithmes cryptographiques à base de couplage.

Je confirme que Pablo a contribué de façon notable au succès de ce stage M2.

Notamment, il a su transférer son savoir-faire en matière de méthodes formelles, puis guider

Martin Moreau afin qu'il soit autonome et puisse apporter lui-même des contributions.

Sylvain Guilley.

Formally Proved Security of Assembly Code Against

Power Analysis

A Case Study on Balanced Logic

Pablo Rauzy Sylvain Guilley
Zakaria Najm

Institut Mines-Télécom ; Télécom ParisTech ; CNRS LTCI
firstname.lastname@telecom-paristech.fr

Abstract

In his keynote speech at CHES 2004, Kocher advocated that side-channel attacks were an
illustration that formal cryptography was not as secure as it was believed because some assump-
tions (e.g., no auxiliary information is available during the computation) were not modeled. This
failure is caused by formal methods’ focus on models rather than implementations. In this pa-
per we present formal methods and tools for designing protected code and proving its security
against power analysis. These formal methods avoid the discrepancy between the model and
the implementation by working on the latter rather than on a high-level model. Indeed, our
methods allow us (a) to automatically insert a power balancing countermeasure directly at the
assembly level, and to prove the correctness of the induced code transformation; and (b) to
prove that the obtained code is balanced with regard to a reasonable leakage model. We also
show how to characterize the hardware to use the resources which maximize the relevancy of
the model. The tools implementing our methods are then demonstrated in a case study on an
8-bit AVR smartcard for which we generate a provably protected present implementation that
reveals to be at least 250 times more resistant to CPA attacks.

Keywords. Dual-rail with Precharge Logic (DPL), formal proof, static analysis, symbolic execu-
tion, implementation, DPA, CPA, smartcard, PRESENT, block cipher, Hamming distance, OCaml.

1 Introduction

The need to trust code is a clear and proved fact, but the code itself needs to be proved before it can
be trusted. In applications such as cryptography or real-time systems, formal methods are used to
prove functional properties on the critical parts of the code. Specifically in cryptography, some non-
functional properties are also important, but are not typically certified by formal proofs yet. One
example of such a property is the resistance to side-channel attacks. Side-channel attacks are a real
world threat to cryptosystems; they exploit auxiliary information gathered from implementations
through physical channels such as power consumption, electromagnetic radiations, or time, in order
to extract sensitive information (e.g., secret keys). The amount of leaked information depends on
the implementation and as such appears difficult to model. As a matter of fact, physical leakages are
usually not modeled when it comes to prove the security properties of a cryptographic algorithm.
By applying formal methods directly on implementations we can avoid the discrepancy between the

1

model and the implementation. Formally proving non-functional security properties then becomes
a matter of modeling the leakage itself. In this chapter we make a first step towards formally
trustable cryptosystems, including for non-functional properties, by showing that modeling leakage
and applying formal methods to implementations is feasible.

Many existing countermeasures against side-channel attacks are implemented at the hardware
level, especially for smartcards. However, software level countermeasures are also very important,
not only in embedded systems where the hardware cannot always be modified or updated, but also
in the purely software world. For example, Zhang et al. [ZJRR12] recently extracted private keys
using side-channel attacks against a target virtual machine running on the same physical server as
their virtual machine. Side channels in software can also be found each time there are some non-
logic behaviors (in the sense that it does not appear in the equations / control-flow modeling the
program) such as timing or power consumption (refer to [KJJ99]), but also some software-specific
information such as packet size for instance (refer to [MO12]).

In many cases where the cryptographic code is executed on secure elements (smartcards, TPM,
tokens, etc.) side-channel and fault analyses are the most natural attack paths. A combination of
signal processing and statistical techniques on the data obtained by side-channel analysis allows to
build key hypotheses distinguishers. The protection against those attacks is necessary to ensure
that secrets do not leak, and most secure elements are thus evaluated against those attacks. Usual
certifications are the common criteria (ISO/IEC 15408), the FIPS 140-2 (ISO/IEC 19790), or
proprietary schemes (EMVCo, CAST, etc.).

Power analysis. It is a form of side-channel attack in which the attacker measures the power
consumption of a cryptographic device. Simple Power Analysis (SPA) consists in directly inter-
preting the electrical activity of the cryptosystem. On unprotected implementations it can for
instance reveal the path taken by the code at branches even when timing attacks [KJJ96] cannot.
Differential Power Analysis (DPA) [KJJ99] is more advanced: the attacker can compute the in-
termediate values within cryptographic computations by statistically analyzing data collected from
multiple cryptographic operations. It is powerful in the sense that it does not require a precise
model of the leakage, and thus works blind, i.e., even if the implementation is blackbox. As sug-
gested in the original DPA paper by Kocher et al. [KJJ99], power consumption is often modeled
by Hamming weight of values or Hamming distance of values’ updates as those are very correlated
with actual measures. Also, when the leakage is little noisy and the implementation is software,
Algebraic Side-Channel Attack (ASCA) [RS09] are possible; they consist in modelling the leakage
by a set of Boolean equations, where the key bits are the only unknown variables [CFGR12].

Thwarting side-channel analysis is a complicated task, since an unprotected implementation
leaks at every step. Simple and powerful attacks manage to exploit any bias. In practice, there
are two ways to protect cryptosystems: “palliative” versus “curative” countermeasures. Palliative
countermeasures attempt to make the attack more difficult, however without a theoretical founda-
tion. They include variable clock, operations shuffling, and dummy encryptions among others (see
also [GM11]). The lack of theoretical foundation make these countermeasures hard to formalize
and thus not suitable for a safe certification process. Curative countermeasures aim at providing
a leak-free implementation based on a security rationale. The two defense strategies are (a) make
the leakage as decorrelated from the manipulated data as possible (masking [MOP06, Chp. 9]), or
(b) make the leakage constant, irrespective of the manipulated data (hiding or balancing [MOP06,
Chp. 7]).

2

Masking. Masking mixes the computation with random numbers, to make the leakage (at least in
average) independent of the sensitive data. Advantages of masking are (a priori) the independence
with respect to the leakage behavior of the hardware, and the existence of provably secure masking
schemes [RP10]. There are two main drawbacks to masking. First of all, there is the possibility of
high-order attacks (that examine the variance or the joint leakage); when the noise is low, ASCAs
can be carried out on one single trace [RSVC09], despite the presence of the masks, that are
just seen as more unknown variables, in addition to the key. Second, masking demands a greedy
requirement for randomness (that is very costly to generate). Another concern with masking is
the overhead it incurs in the computation time. For instance, a provable masking of AES-128 is
reported in [RP10] to be 43 (resp. 90) times slower than the non-masked implementation with a
1st (resp. 2nd) order masking scheme. Further, recent studies have shown that masking cannot be
analyzed independently from the execution platform: for example glitches are transient leakages
that are likely to depend on more than one sensitive data, hence being high-order [MS06]. Indeed, a
glitch occurs when there is a race between two signals, i.e., when it involves more than one sensitive
variable. Additionally, the implementation must be carefully scrutinized to check for the absence
of demasking caused by overwriting a masked sensitive variable with its mask.

Balancing. Balancing requires a close collaboration between the hardware and the software: two
indistinguishable resources, from a side-channel point of view, shall exist and be used according to
a dual-rail protocol. Dual-rail with Precharge Logic (DPL) consists in precharging both resources,
so that they are in a common state, and then setting one of the resources. Which resource has
been set is unknown to the attacker, because both leak in indistinguishable ways (by hypothesis).
This property is used by the DPL protocol to ensure that computations can be carried out without
exploitable leakage [TV06].

Contributions. Dual-rail with Precharge Logic (DPL) is a simple protocol that may look easy
to implement correctly; however, in the current context of awareness about cyber-threats, it be-
comes evident that (independent) formal tools that are able to generate and verify a “trusted”
implementation have a strong value.
• We describe a design method for developing balanced assembly code by making it obey

the DPL protocol. This method consists in automatically inserting the countermeasure and
formally proving that the induced code transformation is correct (i.e., semantic preserving).
• We present a formal method (using symbolic execution) to statically prove the absence of

power consumption leakage in assembly code provided that the hardware it runs on satisfies
a finite and limited set of requirements corresponding to our leakage model.
• We show how to characterize the hardware to run the DPL protocol on resources which

maximize the relevancy of the leakage model.
• We provide a tool called paioli1 which implements the automatic insertion of the DPL counter-

measure in assembly code, and, independently, is able to statically prove the power balancing
of a given assembly code.
• Finally, we demonstrate our methods and tool in a case study on a software implementation

of the present [BKL+07] cipher running on an 8-bit AVR micro-controller. Our practical
results are very encouraging: the provably balanced DPL protected implementation is at

1http://pablo.rauzy.name/sensi/paioli.html

3

http://pablo.rauzy.name/sensi/paioli.html

least 250 times more resistant to power analysis attacks than the unprotected version while
being only 3 times slower. The Signal-to-Noise Ratio (SNR) of the leakage is divided by
approximately 16.

Related work. The use of formal methods is not widespread in the domain of implementations
security. In cases where they exist, security proofs are usually done on mathematical models
rather than implementations. An emblematic example is the Common Criteria [Con13], that bases
its “formal” assurance evaluation levels on “Security Policy Model(s)” (class SPM) and not on
implementation-level proofs. This means that it is the role of the implementers to ensure that their
implementations fit the model, which is usually done by hand and is thus error-prone. For instance,
some masking implementations have been proved; automatic tools for the insertion of masked code
have even been prototyped [MOPT12]. However, masking relies a lot on randomness, which is a rare
resource and is hard to formally capture. Thus, many aspects of the security are actually displaced
in the randomness requirement rather that soundly proved. Moreover, in the field of masking, most
proofs are still literate (i.e., verified manually, not by a computer program). This has led to a recent
security breach in what was supposed to be a proved [RP10] masking implementation [CGP+12].
Previous similar examples exist, e.g., the purported high-order masking scheme [SP06], defeated
one year after in [CPR07].

Timing and cache attacks are an exception as they benefit from the work of Köpf et al. [KB07,
KD09]. Their tool, CacheAudit [DFK+13], implements formal methods that directly work on x86
binaries.

Since we started our work on DPL, others have worked on similar approaches. Independently,
it has been shown that SNR reduction is possible with other encodings that are less costly, such
as “dual-nibble” (Chen et al. [CESY14]) or “m-out-of-n” (Servant et al. [SDMB14]). However, it
becomes admittedly much more difficult to balance the resources aimed at hiding one each other.
Thus, there is a trade-off between performance (in terms of execution speed and code size) and
security. In this chapter we propose a proof-of-concept of maximal security.

In this light it is easy to conclude that the use of formal methods to prove the security of
implementations against power analysis is a need, and a technological enabler: it would guarantee
that the instantiations of security principles are as strong as the security principles themselves.

Organization of the chapter. The DPL countermeasure is studied in Sec. 2. Sec. 3 details our
method to balance assembly code and prove that the proposed transformation is correct. Sec. 4
explains the formal methods used to compute a proof of the absence of power consumption leak-
age. Sec. 5 is a practical case study using the present algorithm on an AVR micro-controller.
Conclusions and perspectives are drawn in Sec. 6.

2 Dual-rail with Precharge Logic

Balancing (or hiding) countermeasures have been employed against side channels since early 2004,
with dual-rail with precharge logic. The DPL countermeasure consists in computing on a redundant
representation: each bit y is implemented as a pair (yFalse, yTrue). The bit pair is then used in a
protocol made up of two phases:

4

∨

∧

∧
∧

∧
∨

∧
∧

∧
∨

yTrue

yFalse

aTrue

bTrue

mTrue

aFalse

bFalse

mFalse

C

∨
∨

∨

∨
∨

∨

C

C

C

aFalse

bFalse

aTrue

bTrue

0

yFalse

yTrue

SecLib:

∨
∨

∧

∨

∧
∧

∧

yFalse

yTrue

aFalse
bFalse

aTrue
bTrue

BCDL:

yFalse

yTrue

aFalse
bFalse

aTrue
bTrue

MDPL:

MAJ

MAJ

OR4

OR4

UNI

WDDL:

Figure 1: Four dual-rail with precharge logic styles.

1. a precharge phase, during which all the bit pairs are zeroized (yFalse, yTrue) = (0, 0), such that
the computation starts from a known reference state;

2. an evaluation phase, during which the (yFalse, yTrue) pair is equal to (1, 0) if it carries the
logical value 0, or (0, 1) if it carries the logical value 1.

The value (yFalse, yTrue) = (1, 1) is unused. As suggested in [MAM+03], it can serve as a canary to
detect a fault. Besides, if a fault turns a (1, 0) or (0, 1) value into either (0, 0) or (1, 1), then the
previous functional value has been forgiven. It is a type of infection, already mentioned in [IPSW06,
SBG+09]. Unlike other infective countermeasure, DPL is not scary [BG13], in that it consists in an
erasure. Indeed, the mutual information between the erased and the initial data is zero (provided
only one bit out of a dual pair is modified).

2.1 State of the Art

Various DPL styles for electronic circuits have been proposed. Some of them, implementing the
same logical and functionality, are represented in Fig. 1; many more variants exist, but these four
are enough to illustrate our point. The reason for the multiplicity of styles is that the indistinguisha-
bility hypothesis on the two resources holding yFalse and yTrue values happens to be violated for
various reasons, which leads to the development of dedicated hardware. A first asymmetry comes
from the gates driving yFalse and yTrue. In Wave Dynamic Differential Logic (WDDL) [TV04a],
these two gates are different: logical or versus logical and. Other logic styles are balanced with
this respect. Then, the load of the gate shall also be similar. This can be achieved by careful
place-and-route constraints [TV04b, GHMP05], that take care of having lines of the same length,
and that furthermore do not interfere one with the other (phenomenon called “crosstalk”). As
those are complex to implement exactly for all secure gates, the Masked Dual-rail with Precharge
Logic (MDPL) [PM05] style has been proposed: instead of balancing exactly the lines carrying
yFalse and yTrue, those are randomly swapped, according to a random bit, represented as a pair
(mFalse,mTrue) to avoid it from leaking. Therefore, in this case, not only the computing gates are

5

the same (viz. a majority), but the routing is balanced thanks to the extra mask. However, it ap-
peared that another asymmetry could be fatal to WDDL and MDPL: the gates pair could evaluate
at different dates, depending on their input. It is important to mention that side-channel acquisi-
tions are very accurate in timing (off-the-shelf oscilloscopes can sample at more than 1 Gsample/s,
i.e., at a higher rate than the clock period), but very inaccurate in space (i.e., it is difficult to
capture the leakage of an area smaller than about 1 mm2 without also recording the leakage from
the surrounding logic). Therefore, two bits can hardly be measured separately. To avoid this issue,
every gate has to include some synchronization logic. In Fig. 1, the “computation part” of the gates
is represented in a grey box. The rest is synchronization logic. In SecLib [GCS+08], the synchro-
nization can be achieved by Muller C-elements (represented with a symbol C [SEE98]), and act as
a decoding of the inputs configuration. Another implementation, Balanced Cell-based Differential
Logic (BCDL) [NBD+10], parallelize the synchronization with the computation.

2.2 DPL in Software

In this chapter, we want to run DPL on an off-the-shelf processor. Therefore, we must: (a) identify
two similar resources that can hold true and false values in an indiscernible way for a side-channel
attacker; (b) play the DPL protocol by ourselves, in software. We will deal with the former in
Sec. 4.2. The rest of this section deals with the latter.

The difficulty of balancing the gates in hardware implementations is simplified in software.
Indeed in software there are less resources than the thousands of gates that can be found in hardware
(aimed at computing fast, with parallelism). Also, there is no such problem as early evaluation,
since the processor executes one instruction after the other; therefore there are no unbalanced paths
in timing. However, as noted by Hoogvorst et al. [HDD11], standard micro-processors cannot be
used as is for our purpose: instructions may clobber the destination operand without precharge;
arithmetic and logic instructions generate numbers of 1 and 0 which depend on the data.

r1 ← r0
r1 ← a
r1 ← r1 ∧ 3
r1 ← r1 � 1
r1 ← r1 � 1
r2 ← r0
r2 ← b
r2 ← r2 ∧ 3
r1 ← r1 ∨ r2
r3 ← r0
r3 ← op[r1]
d ← r0
d ← r3

Figure 2: DPL macro
for d = a op b.

To reproduce the DPL protocol in software requires (a) to work at
the bit level, and (b) to duplicate (in positive and negative logic) the
bit values. Every algorithm can be transformed so that all the manipu-
lated values are bits (by the theorem of equivalence of universal Turing
machines), so (a) is not a problem. Regarding (b), the idea is to use
two bits in each register / memory cell to represent the logical value it
holds. For instance using the two least significant bits, the logical value
1 could be encoded as 1 (01) and the logical value 0 as 2 (10). Then, any
function on those bit values can be computed by a look-up table indexed
by the concatenation of its operands. Each sensitive instruction can be
replaced by a DPL macro which does the necessary precharge and fetch
the result from the corresponding look-up table.

Fig. 2 shows a DPL macro for the computation of d = a op b, using
the two least significant bits for the DPL encoding. The register r0 is an
always-zero register, a and b hold one DPL encoded bit, and op is the
address in memory of the look-up table for the op operation.

This DPL macro assumes that before it starts the state of the pro-
gram is a valid DPL state (i.e., that a and b are of the form /.+(01|10)/2) and leaves it in a valid

2As a convenience, we use regular expressions notation.

6

DPL state to make the macros chainable.
The precharge instructions (like r1 ← r0) erase the content of their destination register or

memory cell before use. If the erased datum is sensitive it is DPL encoded, thus the number of bit
flips (i.e., the Hamming distance of the update) is independent of the sensitive value. If the erased
value is not sensitive (for example the round counter of a block cipher) then the number of bit flips
is irrelevant. In both cases the power consumption provides no sensitive information.

The activity of the shift instructions (like r1 ← r1 � 1) is twice the number of DPL encoded bits
in r1 (and thus does not depend on the value when it is DPL encoded). The two most significant
bits are shifted out and must be 0, i.e., they cannot encode a DPL bit. The logical or instruction
(as in r1 ← r1 ∨ r2) has a constant activity of one bit flip due to the alignment of its operands.
The logical and instructions (like r1 ← r1 ∧ 3) flips as many bits as there are 1s after the two least
significant bits (it’s normally all zeros).

Accesses from/to the RAM (as in r3 ← op[r1]) cause as many bit flips as there are 1s in the
transferred data, which is constant when DPL encoded. Of course, the position of the look-up table
in the memory is also important. In order not to leak information during the addition of the offset
(op + r1 in our example), op must be a multiple of 16 so that its four least significant bits are 0
and the addition only flips the number of bits at 1 in r1, which is constant since at this moment r1
contains the concatenation of two DPL encoded bit values.

We could use other bits to store the DPL encoded value, for example the least and the third
least significant bits. In this case a and b have to be of the form /.+(0.1|1.0)/, only one shift
instruction would have been necessary, and the and instructions’ mask would be 5 instead on 3.

3 Generation of DPL Protected Assembly Code

Here we present a generic method to protect assembly code against power analysis. To achieve
that we implemented a tool (See App. A) which transforms assembly code to make it compliant
with the DPL protocol described in Sec. 2.2. To be as universal as possible the tool works with a
generic assembly language presented in Sec. 3.1. The details of the code transformation are given
in Sec. 3.2. Finally, a proof of the correctness of this transformation is presented in Sec. 3.3.

We implemented paioli 1 using the OCaml3 programming language, which type safety helps to
prevent many bugs. On our present case-study, it runs in negligible time (� 1 second), both for
DPL transformation and simulation, including balance verification. The unprotected (resp. DPL)
bitslice AVR assembly file consists of 641 (resp. 1456) lines of code. We use nibble-wise jumps in
each present operation, and an external loop over all rounds.

3.1 Generic Assembly Language

Our assembly language is generic in that it uses a restricted set of instructions that can be mapped
to and from virtually any actual assembly language. It has the classical features of assembly
languages: logical and arithmetical instructions, branching, labels, direct and indirect addressing.
Fig. 3 gives the Backus–Naur Form (BNF) of the language while Fig. 4 gives the equivalent code
of Fig. 2 as an example of its usage.

The semantics of the instructions are intuitive. For Opcode2 and Opcode3 the first operand is
the destination and the other are the arguments. The mov instruction is used to copy registers,

3http://ocaml.org/

7

http://ocaml.org/

Prog ::= (Label? Inst? (’;’ <comment>)? ’\n’)*

Label ::= <label-name> ’:’

Inst ::= Opcode0

| Branch1 Addr

| Opcode2 Lval Val

| Opcode3 Lval Val Val

| Branch3 Val Val Addr

Opcode0 ::= ’nop’

Branch1 ::= ’jmp’

Opcode2 ::= ’not’ | ’mov’

Opcode3 ::= ’and’ | ’orr’ | ’xor’ | ’lsl’ | ’lsr’

| ’add’ | ’mul’

Branch3 ::= ’beq’ | ’bne’

Val ::= Lval | ’#’ <immediate-value>

Lval ::= ’r’ <register-number>

| ’@’ <memory-address>

| ’!’ Val (’,’ <offset>)?

Addr ::= ’#’ <absolute-code-address>

| <label-name>

Figure 3: Generic assembly syntax (BNF).

load a value from memory, or store a value to memory depending on the form of its arguments. We
remark that the instructions use the “instr dest op1 op2” format, which allows to map similar
instructions from 32-bit processors directly, as well as instructions from 8-bit processors which only
have two operands, by using the same register for dest and op1 for instance.

3.2 Code Transformation

Bitsliced code. As seen in Sec. 2, DPL works at the bit level. Transforming code to make it
DPL compliant thus requires this level of granularity. Bitslicing is possible on any algorithm4, but
we found that bitslicing an algorithm is hard to do automatically. In practice, every bitslice imple-
mentations we found were hand-crafted. However, since Biham presented his bitslice paper [Bih97],
many block ciphers have been implemented in bitslice for performance reasons, which mitigate this
concern. So, for the sake of simplicity, we assume that the input code is already bitsliced.

DPL macros expansion. This is the main point of the transformation of the code.

Definition 1 (Sensitive value). A value is said sensitive if it depends on sensitive data. A sensitive
data depends on the secret key or the plaintext5.

4Intuitively, the proof invokes the Universal Turing Machines equivalence (those that work with only {0, 1} as
alphabet are as powerful as the others).

5Other works consider that a sensitive data must depend on both the secret key and the plaintext (as it is usually
admitted in the “only computation leaks” paradigm; see for instance [RP10, §4.1]). Our definition is broader, in
particular it also encompasses the random probing model [ISW03].

8

Table 1: Look-up tables for and, or, and xor.

idx 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111

and 00 , 00 , 00 , 00 , 00 , 01 , 10 , 00 , 00 , 10 , 10 , 00 , 00 , 00 , 00 , 00

or 00 , 00 , 00 , 00 , 00 , 01 , 01 , 00 , 00 , 01 , 10 , 00 , 00 , 00 , 00 , 00

xor 00 , 00 , 00 , 00 , 00 , 10 , 01 , 00 , 00 , 01 , 10 , 00 , 00 , 00 , 00 , 00

Definition 2 (Sensitive instruction). We say that an instruction is sensitive if it may modify the
Hamming weight of a sensitive value.

mov r1 r0

mov r1 a

and r1 r1 #3

lsl r1 r1 #1

lsl r1 r1 #1

mov r2 r0

mov r2 b

and r2 r2 #3

orr r1 r1 r2

mov r3 r0

mov r3 !r1,op

mov d r0

mov d r3

Figure 4: DPL macro
of Fig. 2 in assembly.

All the sensitive instructions must be expanded to a DPL macro.
Thus, all the sensitive data must be transformed too. Each literal (“im-
mediate” values in assembly terms), memory cells that contain initialized
constant data (look-up tables, etc.), and registers values need to be DPL
encoded. For instance, using the two least significant bits, the 1s stay
1s (01) and the 0s become 2s (10).

Since the implementation is bitsliced, only the logical (bit level) op-
erators are used in sensitive instructions (and, or, xor, lsl, lsr, and
not). To respect the DPL protocol, not instructions are replaced by
xor which inverse the positive logic and the negative logic bits of DPL
encoded values. For instance if using the two least significant bits for
the DPL encoding, not a b is replaced by xor a b #3. Bitsliced code
never needs to use shift instructions since all bits are directly accessible.

Moreover, we currently run this code transformation only on block
ciphers. Given that the code is supposed to be bitsliced, this means
that the branching and arithmetic instructions are either not used or
are used only in a deterministic way (e.g., looping on the round counter)
that does not depend on sensitive information.

Thus, only and, or, and xor instructions need to be expanded to DPL macros such as the one
shown in Fig. 4. This macro has the advantage that it actually uses two operands instructions only
(when there are three operands in our generic assembly language, the destination is the same as
one of the two others), which makes its instructions mappable one-to-one even with 8-bit assembly
languages.

Look-up tables. As they appear in the DPL macro, the addresses of look-up tables are sensitive
too. As seen in Sec. 2.2, the look-up tables must be located at an address which is a multiple of 16
so that the last four bits are available when adding the offset (in the case where we use the last four
bits to place the two DPL encoded operands). Tab. 1 present the 16 values present in the look-up
tables for and, or, and xor.

Values in the look-up tables which are not at DPL valid addresses, i.e., addresses which are not
a concatenation of 01 or 10 with 01 or 10, are preferentially DPL invalid, i.e., 00 or 11. Like this
if an error occurs during the execution (such as a fault injection for instance) it poisons the result
and all the subsequent computations will be faulted too (infective computation).

9

Before

After

Table 2: and d a b.

a, b, d

0, 0, ? 0, 1, ? 1, 0, ? 1, 1, ?
0, 0, 0 0, 1, 0 1, 0, 0 1, 1, 1

Table 3: DPL and d a b.

a, b, d

10, 10, ? 10, 01, ? 01, 10, ? 01, 01, ?

10, 10, 10 10, 01, 10 01, 10, 10 01, 01, 01

3.3 Correctness Proof of the Transformation

Formally proving the correctness of the transformation requires to define what we intend by “cor-
rect”. Intuitively, it means that the transformed code does the “same thing” as the original one.

Definition 3 (Correct DPL transformation). Let S be a valid state of the system (values in
registers and memory). Let c be a sequence of instructions of the system. Let Ŝ be the state of the
system after the execution of c with state S, we denote that by S

c−→ Ŝ. We write dpl(S) for the
DPL state (with DPL encoded values of the 1s and 0s in memory and registers) equivalent to the
state S.
We say that c′ is a correct DPL transformation of c if S

c−→ Ŝ =⇒ dpl(S)
c′−→ dpl(Ŝ).

Proposition 1 (Correctness of our code transformation). The expansion of the sensitive instruc-
tions into DPL macros such as presented in Sec. 2.2 is a correct DPL transformation.

Proof. Let a and b be instructions. Let c be the code a; b (instruction a followed by instruction b).

Let X, Y , and Z be states of the program. If we have X
a−→ Y and Y

b−→ Z, then we know that
X

c−→ Z (by transitivity).
Let a′ and b′ be the DPL macro expansions of instructions a and b. Let c′ be the DPL transfor-

mation of code c. Since the expansion into macros is done separately for each sensitive instruction,
without any other dependencies, we know that c′ is a′; b′.

If we have dpl(X)
a′−→ dpl(Y) and dpl(Y)

b′−→ dpl(Z), then we know that dpl(X)
c′−→ dpl(Z).

This means that a chain of correct transformations is a correct transformation. Thus, we only
have to show that the DPL macro expansion is a correct transformation.

Let us start with the and operation. Since the code is bitsliced, there are only four possibilities.
Tab. 2 shows these possibilities for the and d a b instruction.

Tab. 4 shows the evolution of the values of a, b, and d during the execution of the macro which
and d a b expands to. We assume the look-up table for and is located at address and. Tab. 3
sums up the Tab. 4 in the same format as Tab. 2.

This proves that the DPL transformation of the and instructions are correct. The demonstration
is similar for or and xor operations.

The automatic DPL transformation of arbitrary assembly code has been implemented in our
tool described in App. A.

4 Formally Proving the Absence of Leakage

Now that we know the DPL transformation is correct, we need to prove its efficiency security-wise.
We prove the absence of leakage on the software, while obviously the leakage heavily depends on
the hardware. Our proof thus makes an hypothesis on the hardware: we suppose that the bits

10

T
ab

le
4
:

E
x
ec

u
ti

on
of

th
e

D
P

L
m

ac
ro

ex
p

an
d

ed
fr

om
a
n
d
d
a
b
.

a
,b

1
0
,
1
0

1
0
,
0
1

0
1
,
1
0

0
1
,
0
1

d
r
1

r
2

r
3

d
r
1

r
2

r
3

d
r
1

r
2

r
3

d
r
1

r
2

r
3

m
o
v
r
1
r
0

?
0

?
?

?
0

?
?

?
0

?
?

?
0

?
?

m
o
v
r
1

a
?

1
0

?
?

?
1
0

?
?

?
0
1

?
?

?
0
1

?
?

a
n
d
r
1
r
1
#
3

?
1
0

?
?

?
1
0

?
?

?
0
1

?
?

?
0
1

?
?

s
h
l
r
1
r
1
#
1

?
1
0
0

?
?

?
1
0
0

?
?

?
0
1
0

?
?

?
0
1
0

?
?

s
h
l
r
1
r
1
#
1

?
1
0
0
0

?
?

?
1
0
0
0

?
?

?
0
1
0
0

?
?

?
0
1
0
0

?
?

m
o
v
r
2
r
0

?
1
0
0
0

0
?

?
1
0
0
0

0
?

?
0
1
0
0

0
?

?
0
1
0
0

0
?

m
o
v
r
2

b
?

1
0
0
0

1
0

?
?

1
0
0
0

0
1

?
?

0
1
0
0

1
0

?
?

0
1
0
0

0
1

?

a
n
d
r
2
r
2
#
3

?
1
0
0
0

1
0

?
?

1
0
0
0

0
1

?
?

0
1
0
0

1
0

?
?

0
1
0
0

0
1

?

o
r
r
r
1
r
1
r
2

?
1
0
1
0

1
0

?
?

1
0
0
1

0
1

?
?

0
1
1
0

1
0

?
?

0
1
0
1

0
1

?

m
o
v
r
3
r
0

?
1
0
1
0

1
0

0
?

1
0
0
1

0
1

0
?

0
1
1
0

1
0

0
?

0
1
0
1

0
1

0

m
o
v
r
3
!
r
1
,
a
n
d
6

?
1
0
1
0

1
0

1
0

?
1
0
0
1

0
1

1
0

?
0
1
1
0

1
0

1
0

?
0
1
0
1

0
1

0
1

m
o
v

d
r
0

0
1
0
1
0

1
0

1
0

0
1
0
0
1

0
1

1
0

0
0
1
1
0

1
0

1
0

0
0
1
0
1

0
1

0
1

m
o
v

d
r
3

1
0

1
0
1
0

1
0

1
0

1
0

1
0
0
1

0
1

1
0

1
0

0
1
1
0

1
0

1
0

0
1

0
1
0
1

0
1

0
1

11

we use for the positive and negative logic in the DPL protocol leak the same amount. This may
seem like an unreasonable hypothesis, since it is not true in general. However, the protection can
be implemented in a soft CPU core (LatticeMicro32, OpenRISC, LEON2, etc.), that would be
laid out in a Field-Programmable Gate Array (FPGA) or in an Application-Specific Integrated
Circuit (ASIC) with special balancing constraints at place-and-route. The methodology follows the
guidelines given by Chen et al. in [CSS13]. Moreover, we will show in Sec. 4.2 how it is possible,
using stochastic profiling, to find bits which leakages are similar enough for the DPL countermeasure
to be sufficiently efficient even on non-specialized hardware. That said, it is important to note that
the difference in leakage between two bits of the same register should not be large enough for the
attacker to break the DPL protection using SPA or ASCA.

Formally proving the balance of DPL code requires to properly define the notions we are using.

Definition 4 (Leakage model). The attacker is able to measure the power consumption of parts
of the cryptosystem. We model power consumption by the Hamming distance of values updates,
i.e., the number of bit flips. It is a commonly accepted model for power analysis, for instance
with DPA [KJJ99] or Correlation Power Analysis (CPA) [BCO04]. We write H(a, b) the Hamming
distance between the values a and b.

Definition 5 (Constant activity). The activity of a cryptosystem is said to be constant if its power
consumption does not depend on the sensitive data and is thus always the same.
Formally, let P (s) be a program which has s as parameter (e.g., the key and the plaintext).
According to our leakage model, a program P (s) is of constant activity if:
• for every values s1 and s2 of the parameter s, for each cycle i, for every sensitive value v, v

is updated at cycle i in the run of P (s1) if and only if it is updated also at cycle i in the run
of P (s2);
• whenever an instruction modifies a sensitive value from v to v′, then the value of H(v, v′)

does not depend on s.

Remark 1. The first condition of Def. 5 mostly concerns leakage in the horizontal / time dimension,
while the second condition mostly concerns leakage in the vertical / amplitude dimension.

Remark 2. The first condition of Def. 5 implies that the runs of the program P (s) are constant
in time for every s. This implies that a program of constant activity is not vulnerable to timing
attacks, which is not so surprising given the similarity between SPA and timing attacks.

4.1 Computed Proof of Constant Activity

To statically determine if the code is correctly balanced (i.e., that the activity of a given program
is constant according to Def. 5), our tool relies on symbolic execution. The idea is to run the code
of the program independently of the sensitive data. This is achieved by computing on sets of all the
possible values instead of values directly. The symbolic execution terminates in our case because
we are using the DPL protection on block ciphers, and we avoid combinatorial explosion thanks
to bitslicing, as a value can initially be only 1 or 0 (or rather their DPL encoded counterparts).
Indeed, bitsliced code only use logical instructions as explained in Sec. 3.2, which will always return
a result in {0, 1} when given two values in {0, 1} as arguments.

Our tool implements an interpreter for our generic assembly language which work with sets of
values. The interpreter is equipped to measure all the possible Hamming distances of each value

6See Tab. 1.

12

update, and all the possible Hamming weight of values. It watches updates in registers, in memory,
and also in address buses (since the addresses may leak information when reading in look-up tables).
If for one of these value updates there are different possible Hamming distances or Hamming weight,
then we consider that there is a leak of information: the power consumption activity is not constant
according to Def. 5.

Example. Let a be a register which can initially be either 0 or 1. Let b be a register which can
initially be only 1. The execution of the instruction orr a a b will set the value of a to be all the
possible results of a ∨ b. In this example, the new set of possible values of a will be the singleton
{1} (since 0 ∨ 1 is 1 and 1 ∨ 1 is 1 too). The execution of this instruction only modified one value,
that of a. However, the Hamming distance between the previous value of a and its new value can
be either 0 (in case a was originally 1) or 1 (in case a was originally 0). Thus, we consider that
there is a leak.

By running our interpreter on assembly code, we can statically determine if there are leakages
or if the code is perfectly balanced. For instance for a block cipher, we initially set the key and the
plaintext (i.e., the sensitive data) to have all their possible values: all the memory cells containing
the bits of the key and of the plaintext have the value {0, 1} (which denotes the set of two elements:
0 and 1). Then the interpreter runs the code and outputs all possible leakage; if none are present,
it means that the code is well balanced. Otherwise we know which instructions caused the leak,
which is helpful for debugging, and also to locate sensitive portions of the code.

For an example in which the code is balanced, we can refer to the execution of the and DPL
macro shown in Tab. 4. There we can see that the Hamming distance of the updates does not
depend on the values of a and b. We also note that at the end of the execution (and actually, all
along the execution) the Hamming weight of each value does not depend on a and b either. This
allows to chain macros safely: each value is precharged with 0 before being written to.

4.2 Hardware Characterization

The DPL countermeasure relies on the fact that the pair of bits used to store the DPL encoded
values leak the same way, i.e., that their power consumptions are the same. This property is
generally not true in non-specialized hardware. However, using the two closest bits (in terms
of leakage) for the DPL protocol still helps reaching a better immunity to side-channel attacks,
especially ASCAs that operate on a limited number of traces.

The idea is to compute the leakage level of each of the bits during the execution of the algorithm,
in order to choose the two closest ones as the pair to use for the DPL protocol and thus ensure
an optimal balance of the leakage. This is facilitated by the fact that the algorithm is bitsliced.
Indeed, it allows to run the whole computation using only a chosen bit while all the others stay
zero. We will see in Sec. 5.1 how we characterized our smartcard in practice.

5 Case Study: present on an ATmega163 AVR Micro-Controller

5.1 Profiling the ATmega163

We want to limit the size of the look-up tables used by the DPL macros. Thus, DPL macros need
to be able to store two DPL encoded bits in the four consecutive bits of a register. This lets 13

13

possible DPL encoding layouts on 8-bit. Writing X for a bit that is used and x otherwise, we have:
1. xxxxxxXX,
2. xxxxxXXx,
3. xxxxXXxx,
4. xxxXXxxx,
5. xxXXxxxx,
6. xXXxxxxx,
7. XXxxxxxx,
8. xxxxxXxX,
9. xxxxXxXx,

10. xxxXxXxx,
11. xxXxXxxx,
12. xXxXxxxx,
13. XxXxxxxx.

As explained in Sec. 4.2, we want to use the pair of bits that have the closest leakage properties,
and also which is the closest from the least significant bit, in order to limit the size of the look-up
tables.

To profile the AVR chip (we are working with an Atmel ATmega163 AVR smartcard, which is
notoriously leaky), we ran eight versions of an unprotected bitsliced implementation of present,
each of them using only one of the 8 possible bits. We used the Normalized Inter-Class Variance
(NICV) [BDGN14a], also called coefficient of determination, as a metric to evaluate the leakage
level of the variables of each of the 8 versions. Let us denote by L the (noisy and non-injective)
leakage associated with the manipulation of the sensitive value V , both seen as random variables;
then the NICV is defined as the ratio between the inter-class and the total variance of the leakage,
that is: NICV = Var[E[L|V]]

Var[L] . By the Cauchy-Schwarz theorem, we have 0 6 NICV 6 1; thus the
NICV is an absolute leakage metric. A key advantage of NICV is that it detects leakage using public
information like input plaintexts or output ciphertexts only. We used a fixed key and a variable
plaintext on which applying NICV gave us the leakage level of all the intermediate variables in
bijective relation with the plaintext (which are all the sensible data as seen in Def. 1). As we can
see on the measures plotted in Fig. 5 (which can be found in App. B), the least significant bit leaks
very differently from the others, which are roughly equivalent in terms of leakage7. Thus, we chose
to use the xxxxxXXx DPL pattern to avoid the least significant bit (our goal here is not to use the
optimal pair of bits but rather to demonstrate the added-value of the characterization).

5.2 Generating Balanced AVR Assembly

We wrote an AVR bitsliced implementation of present that uses the S-Box in 14 logic gates from
Courtois et al. [CHM11]. This implementation was translated in our generic assembly language (see
Sec. 3.1). The resulting code was balanced following the method discussed in Sec. 3, except that
we used the DPL encoding layout adapted to our particular smartcard, as explained in Sec. 5.1.
App. C presents the code of the adapted DPL macro. The balance of the DPL code was then
verified as in Sec. 4. Finally, the verified code was mapped back to AVR assembly. All the code
transformations and the verification were done automatically using our tool.

7These differences are due to the internal architecture of the chip, for which we don’t have the specifications.

14

5.3 Cost of the Countermeasure

Table 5: DPL cost.

bitslice DPL cost

code (B) 1620 3056 ×1.88
RAM (B) 288 352 +64

#cycles 78, 403 235, 427 ×3

The table in Tab. 5 compares the performances of
the DPL protected implementation of present with
the original bitsliced version from which the pro-
tected one has been derived. The DPL countermea-
sure multiplies by 1.88 the size of the compiled code.
This low factor can be explained by the numerous
instructions which it is not necessary to transform
(the whole permutation layer of the present algo-
rithm is left as is for instance). The protected version uses 64 more bytes of memory (sparsely, for
the DPL macro look-up tables). It is also only 3 times slower8, or 24 times if we consider that the
original bitsliced but unprotected code could operate on 8 blocks at a time.

Note that these experimental results are only valid for the present algorithm on the Atmel
ATmega163 AVR device we used. Further work is necessary to compare these results to those which
would be obtained with other algorithms such as Advanced Encryption Standard (AES), and on
other platforms such as ARM processors.

5.4 Attacks

We attacked three implementations of the present algorithm: a bitsliced but unprotected one, a
DPL one using the two less significant bits, and a DPL one using two bits that are more balanced
in term of leakage (as explained in Sec. 5.1). On each of these, we computed the success rate of
using monobit CPA of the output of the S-Box as a model. The monobit model is relevant because
only one bit of sensitive data is manipulated at each cycle since the algorithm is bitsliced, and also
because each register is precharged at 0 before a new intermediate value is written to it, as per the
DPL protocol prescribe. Note that this means we consider the resistance against first-order attacks
only. Actually, we are precisely in the context of [MOS11], where the efficiency of correlation and
Bayesian attacks gets close as soon as the number of queries required to perform a successful attack
is large enough. This justifies our choice of the CPA for the attack evaluation.

The results are shown in Fig. 9 (which can be found in App. D.2). They demonstrate that the
first DPL implementation is at least 10 times more resistant to first-order power analysis attacks
(requiring almost 1, 500 traces) than the unprotected one. The second DPL implementation, which
takes the chip characterization into account, is 34 times more resistant (requiring more than 4, 800
traces).

Interpreting these results requires to bear in mind that the attacks setting was largely to the
advantage of the attacker. In fact, these results are very pessimistic: we used our knowledge of
the key to select a narrow part of the traces where we knew that the attack would work, and we
used the NICV [BDGN14a] to select the point where the SNR of the CPA attack is the highest
(see similar use cases of NICV in [BDGN14b]). We did this so we could show the improvement in
security due to the characterization of the hardware. Indeed, without this “cheating attacker” (for
the lack of a better term), i.e., when we use a monobit CPA taking into account the maximum

8Notice that present is inherently slow in software (optimized non-bitsliced assembly is reported to run in
about 11, 000 clock cycles on an Atmel ATtiny 45 device [EGG+12]) because it is designed for hardware. Typically,
the permutation layer is free in hardware, but requires many bit-level manipulations in software. Nonetheless, we
emphasize that there are contexts where present must be supported, but no hardware accelerator is available.

15

of correlation over the full round, as a normal attacker would do, the unprotected implementation
breaks using about 400 traces (resp. 138 for the “cheating attacker”), while the poorly balanced
one is still not broken using 100, 000 traces (resp. about 1, 500). We do not have more traces than
that so we can only say that with an experimental SNR of 15 (which is quite large so far), the
security gain is more than 250× and may be much higher with the hardware characterization taken
into account as our results with the “cheating attacker” shows.

As a comparison9, an unprotected AES on the same smartcard breaks in 15 traces, and in 336
traces with a first order masking scheme using less powerful attack setting (see success rates of
masking in App. D.1), hence a security gain of 22×. Besides, we notice that our software DPL
protection thwarts ASCAs. Indeed, ASCAs require a high signal to noise ratio on a single trace.
This can happen both on unprotected and on masked implementation. However, our protection
aims at theoretically cancelling the leakage, and practically manages to reduce it significantly,
even when the chosen DPL bit pair is not optimal. Therefore, coupling software DPL with key-
update [MSGR10] allows to both prevent against fast attacks on few traces (ASCAs) and against
attacks that would require more traces (regular CPAs).

6 Conclusions and Perspectives

Contributions. We present a method to protect any bitsliced assembly code by transforming it
to enforce the Dual-rail with Precharge Logic (DPL) protocol, which is a balancing countermeasure
against power analysis. We provide a tool which automates this transformation. We also formally
prove that this transformation is correct, i.e., that it preserves the semantic of the program.

Independently, we show how to formally prove that assembly code is well balanced. Our tool
is also able to use this technique to statically determine whether some arbitrary assembly code’s
power consumption activity is constant, i.e., that it does not depend on the sensitive data. In this
chapter we used the Hamming weight of values and the Hamming distance of values update as
leakage models for power consumption, but our method is not tied to it and could work with any
other leakage models that are computable. We present how to characterize the targeted hardware
to make use of the resources which maximize the relevancy of our leakage model to run the DPL
protocol.

We then applied our methods using our tool using an implementation of the present cipher on
a real smartcard, which ensured that our methods and models are relevant in practice. In our case
study, the provably balanced DPL protected implementation is at least 250 times more resistant to
power analysis attacks than the unprotected version while being only 3 times slower. These figures
could be better. Indeed, they do not take into account hardware characterization which helps the
balancing a lot, as we were able to see with the “cheating attacker”. Moreover, we have used the
hardware characterization data grossly, only to show the added-value of the operation, which as
expected is non-negligible. And of course interpreting our figures require to take into account that
the ATmega163, the model of smartcard that we had at our disposal, is notoriously leaky.

These results show that software balancing countermeasures are realistic: our formally proved
countermeasure is an order of magnitude less costly than the state of the art of formally proved
masking [RP10].

9We insist that the comparison between two security gains is very platform-dependent. The figures we give are
only valid on our specific setup. Of course, for different conditions, e.g., lower signal-to-noise ratio, masking might
become more secure than DPL.

16

Future work. The first and foremost future work surely is that our methods and tools need to
be further tested in other experimental settings, across more hardware platforms, and using other
cryptographic algorithms.

We did not try to optimize our present implementation (neither for speed nor space). However,
automated proofs enable optimization: indeed, the security properties can be checked again after
any optimization attempt (using proofs computation as non-regression tests, either for changes in
the DPL transformation method, or for handcrafted optimizations of the generated DPL code).

Although the mapping from the internal assembly of our tool to the concrete assembly is
straightforward, it would be better to have a formal correctness proof of the mapping.

Our work would also benefit from automated bitslicing, which would allow to automatically
protect any assembly code with the DPL countermeasure. However, it is still a challenging issue.

Finally, the DPL countermeasure itself could be improved: the pair of bits used for the DPL
protocol could change during the execution, or more simply it could be chosen at random for
each execution in order to better balance the leakage among multiple traces. Besides, unused bits
could be randomized instead of being zero in order to add noise on top of balancing, and thus
reinforce the hypotheses we make on the hardware. An anonymous reviewer of the PROOFS 2014
workshop suggested that randomness could instead be used to mask the intermediate bits. Indeed,
the reviewer thinks that switching bus lines may only increase noise, while masking variables may
provide sound resistance, at least at first order. The resulting method would therefore: 1. gain
both the 1st-order resistance of masking countermeasures and the significant flexibility of software-
defined countermeasures; 2. still benefit from the increase of resistance resorting to the use of the
DPL technique, as demonstrated by present chapter. This suggestion is of course only intuitive
and lacks argumentation based on precise analysis and calculation.

We believe formal methods have a bright future concerning the certification of side-channel
attacks countermeasures (including their implementation in assembly) for trustable cryptosystems.

References

[BCO04] Éric Brier, Christophe Clavier, and Francis Olivier. Correlation Power Analysis with
a Leakage Model. In CHES, volume 3156 of LNCS, pages 16–29. Springer, August
11–13 2004. Cambridge, MA, USA.

[BDGN14a] Shivam Bhasin, Jean-Luc Danger, Sylvain Guilley, and Zakaria Najm. NICV: Nor-
malized Inter-Class Variance for Detection of Side-Channel Leakage. In International
Symposium on Electromagnetic Compatibility (EMC ’14 / Tokyo). IEEE, May 12-16
2014. Session OS09: EM Information Leakage. Hitotsubashi Hall (National Center of
Sciences), Chiyoda, Tokyo, Japan.

[BDGN14b] Shivam Bhasin, Jean-Luc Danger, Sylvain Guilley, and Zakaria Najm. Side-channel
Leakage and Trace Compression Using Normalized Inter-class Variance. In Proceed-
ings of the Third Workshop on Hardware and Architectural Support for Security and
Privacy, HASP ’14, pages 7:1–7:9, New York, NY, USA, 2014. ACM.

[BG13] Alberto Battistello and Christophe Giraud. Fault Analysis of Infective AES Compu-
tations. In Wieland Fischer and Jörn-Marc Schmidt, editors, 2013 Workshop on Fault

17

Diagnosis and Tolerance in Cryptography, Los Alamitos, CA, USA, August 20, 2013,
pages 101–107. IEEE, 2013. Santa Barbara, CA, USA.

[Bih97] Eli Biham. A Fast New DES Implementation in Software. In Eli Biham, editor, FSE,
volume 1267 of Lecture Notes in Computer Science, pages 260–272. Springer, 1997.

[BKL+07] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel Poschmann,
Matthew J. B. Robshaw, Yannick Seurin, and Charlotte Vikkelsoe. PRESENT: An
Ultra-Lightweight Block Cipher. In CHES, volume 4727 of LNCS, pages 450–466.
Springer, September 10-13 2007. Vienna, Austria.

[CESY14] Cong Chen, Thomas Eisenbarth, Aria Shahverdi, and Xin Ye. Balanced Encoding to
Mitigate Power Analysis: A Case Study. In CARDIS, Lecture Notes in Computer
Science. Springer, November 2014. Paris, France.

[CFGR12] Claude Carlet, Jean-Charles Faugère, Christopher Goyet, and Guénaël Renault. Anal-
ysis of the algebraic side channel attack. J. Cryptographic Engineering, 2(1):45–62,
2012.

[CGP+12] Claude Carlet, Louis Goubin, Emmanuel Prouff, Michaël Quisquater, and Matthieu
Rivain. Higher-Order Masking Schemes for S-Boxes. In Anne Canteaut, editor, Fast
Software Encryption - 19th International Workshop, FSE 2012, Washington, DC,
USA, March 19-21, 2012. Revised Selected Papers, volume 7549 of Lecture Notes in
Computer Science, pages 366–384. Springer, 2012.

[CHM11] Nicolas Courtois, Daniel Hulme, and Theodosis Mourouzis. Solving Circuit Optimisa-
tion Problems in Cryptography and Cryptanalysis. IACR Cryptology ePrint Archive,
2011:475, 2011. (Also presented in SHARCS 2012, Washington DC, 17-18 March 2012,
on page 179).

[Con13] Common Criteria Consortium. Common Criteria (aka CC) for Information Technology
Security Evaluation (ISO/IEC 15408), 2013.
Website: http://www.commoncriteriaportal.org/.

[CPR07] Jean-Sébastien Coron, Emmanuel Prouff, and Matthieu Rivain. Side Channel Crypt-
analysis of a Higher Order Masking Scheme. In Pascal Paillier and Ingrid Verbauwhede,
editors, CHES, volume 4727 of LNCS, pages 28–44. Springer, 2007.

[CSS13] Zhimin Chen, Ambuj Sinha, and Patrick Schaumont. Using Virtual Secure Circuit
to Protect Embedded Software from Side-Channel Attacks. IEEE Trans. Computers,
62(1):124–136, 2013.

[DFK+13] Goran Doychev, Dominik Feld, Boris Köpf, Laurent Mauborgne, and Jan Reineke.
CacheAudit: A Tool for the Static Analysis of Cache Side Channels. IACR Cryptology
ePrint Archive, 2013:253, 2013.

[EGG+12] Thomas Eisenbarth, Zheng Gong, Tim Güneysu, Stefan Heyse, Sebastiaan Indesteege,
Stéphanie Kerckhof, François Koeune, Tomislav Nad, Thomas Plos, Francesco Regaz-
zoni, François-Xavier Standaert, and Löıc van Oldeneel tot Oldenzeel. Compact Im-
plementation and Performance Evaluation of Block Ciphers in ATtiny Devices. In

18

http://www.commoncriteriaportal.org/

Aikaterini Mitrokotsa and Serge Vaudenay, editors, AFRICACRYPT, volume 7374 of
Lecture Notes in Computer Science, pages 172–187. Springer, 2012.

[GCS+08] Sylvain Guilley, Sumanta Chaudhuri, Laurent Sauvage, Philippe Hoogvorst, Renaud
Pacalet, and Guido Marco Bertoni. Security Evaluation of WDDL and SecLib Counter-
measures against Power Attacks. IEEE Transactions on Computers, 57(11):1482–1497,
nov 2008.

[GHMP05] Sylvain Guilley, Philippe Hoogvorst, Yves Mathieu, and Renaud Pacalet. The “Back-
end Duplication” Method. In CHES, volume 3659 of LNCS, pages 383–397. Springer,
2005. August 29th – September 1st, Edinburgh, Scotland, UK.

[GM11] Tim Güneysu and Amir Moradi. Generic side-channel countermeasures for reconfig-
urable devices. In Bart Preneel and Tsuyoshi Takagi, editors, CHES, volume 6917 of
LNCS, pages 33–48. Springer, 2011.

[HDD11] Philippe Hoogvorst, Jean-Luc Danger, and Guillaume Duc. Software Implementation
of Dual-Rail Representation. In COSADE, February 24-25 2011. Darmstadt, Germany.

[IPSW06] Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and David Wagner. Private Circuits II:
Keeping Secrets in Tamperable Circuits. In EUROCRYPT, volume 4004 of Lecture
Notes in Computer Science, pages 308–327. Springer, May 28 – June 1 2006. St.
Petersburg, Russia.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private Circuits: Securing Hardware
against Probing Attacks. In CRYPTO, volume 2729 of Lecture Notes in Computer
Science, pages 463–481. Springer, August 17–21 2003. Santa Barbara, California,
USA.

[KB07] Boris Köpf and David A. Basin. An information-theoretic model for adaptive side-
channel attacks. In Peng Ning, Sabrina De Capitani di Vimercati, and Paul F. Syver-
son, editors, ACM Conference on Computer and Communications Security, pages 286–
296. ACM, 2007.

[KD09] Boris Köpf and Markus Dürmuth. A provably secure and efficient countermeasure
against timing attacks. In CSF, pages 324–335. IEEE Computer Society, 2009.

[KJJ96] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Timing Attacks on Implementations
of Diffie-Hellman, RSA, DSS, and Other Systems. In Proceedings of CRYPTO’96,
volume 1109 of LNCS, pages 104–113. Springer-Verlag, 1996.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis. In
Proceedings of CRYPTO’99, volume 1666 of LNCS, pages 388–397. Springer-Verlag,
1999.

[MAM+03] Simon Moore, Ross Anderson, Robert Mullins, George Taylor, and Jacques J.A.
Fournier. Balanced Self-Checking Asynchronous Logic for Smart Card Applications.
Journal of Microprocessors and Microsystems, 27(9):421–430, October 2003.

19

[MO12] Luke Mather and Elisabeth Oswald. Pinpointing side-channel information leaks in
web applications. J. Cryptographic Engineering, 2(3):161–177, 2012.

[MOP06] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power Analysis Attacks: Re-
vealing the Secrets of Smart Cards. Springer, December 2006. ISBN 0-387-30857-1,
http://www.dpabook.org/.

[MOPT12] Andrew Moss, Elisabeth Oswald, Dan Page, and Michael Tunstall. Compiler Assisted
Masking. In Emmanuel Prouff and Patrick Schaumont, editors, CHES, volume 7428
of LNCS, pages 58–75. Springer, 2012.

[MOS11] Stefan Mangard, Elisabeth Oswald, and François-Xavier Standaert. One for All - All
for One: Unifying Standard DPA Attacks. Information Security, IET, 5(2):100–111,
2011. ISSN: 1751-8709 ; Digital Object Identifier: 10.1049/iet-ifs.2010.0096.

[MS06] Stefan Mangard and Kai Schramm. Pinpointing the Side-Channel Leakage of Masked
AES Hardware Implementations. In CHES, volume 4249 of LNCS, pages 76–90.
Springer, October 10-13 2006. Yokohama, Japan.

[MSGR10] Marcel Medwed, François-Xavier Standaert, Johann Großschädl, and Francesco Regaz-
zoni. Fresh Re-Keying: Security against Side-Channel and Fault Attacks for Low-Cost
Devices. In AFRICACRYPT, volume 6055 of LNCS, pages 279–296. Springer, May
03-06 2010. Stellenbosch, South Africa. DOI: 10.1007/978-3-642-12678-9 17.

[NBD+10] Maxime Nassar, Shivam Bhasin, Jean-Luc Danger, Guillaume Duc, and Sylvain Guil-
ley. BCDL: A high performance balanced DPL with global precharge and without
early-evaluation. In DATE’10, pages 849–854. IEEE Computer Society, March 8-12
2010. Dresden, Germany.

[PM05] Thomas Popp and Stefan Mangard. Masked Dual-Rail Pre-charge Logic: DPA-
Resistance Without Routing Constraints. In Josyula R. Rao and Berk Sunar, editors,
Cryptographic Hardware and Embedded Systems – CHES 2005, volume 3659 of LNCS,
pages 172–186. Springer, 2005.

[RP10] Matthieu Rivain and Emmanuel Prouff. Provably Secure Higher-Order Masking of
AES. In Stefan Mangard and François-Xavier Standaert, editors, CHES, volume 6225
of LNCS, pages 413–427. Springer, 2010.

[RS09] Mathieu Renauld and François-Xavier Standaert. Algebraic Side-Channel Attacks. In
Feng Bao, Moti Yung, Dongdai Lin, and Jiwu Jing, editors, Inscrypt, volume 6151 of
Lecture Notes in Computer Science, pages 393–410. Springer, 2009.

[RSVC09] Mathieu Renauld, François-Xavier Standaert, and Nicolas Veyrat-Charvillon. Alge-
braic Side-Channel Attacks on the AES: Why Time also Matters in DPA. In CHES,
volume 5747 of Lecture Notes in Computer Science, pages 97–111. Springer, September
6-9 2009. Lausanne, Switzerland.

[SBG+09] Nidhal Selmane, Shivam Bhasin, Sylvain Guilley, Tarik Graba, and Jean-Luc Danger.
WDDL is Protected Against Setup Time Violation Attacks. In FDTC, pages 73–
83. IEEE Computer Society, September 6th 2009. In conjunction with CHES’09,

20

http://www.springer.com/
http://www.dpabook.org/

Lausanne, Switzerland. DOI: 10.1109/FDTC.2009.40; Online version: http://hal.

archives-ouvertes.fr/hal-00410135/en/.

[SDMB14] Victor Servant, Nicolas Debande, Houssem Maghrebi, and Julien Bringer. Study of
a Novel Software Constant Weight Implementation. In CARDIS, Lecture Notes in
Computer Science. Springer, November 2014. Paris, France.

[SEE98] Maitham Shams, Jo. C. Ebergen, and Mohamed I. Elmasry. Modeling and comparing
CMOS implementations of the C-Element. IEEE Transactions on VLSI Systems,
6(4):563–567, December 1998.

[SP06] Kai Schramm and Christof Paar. Higher Order Masking of the AES. In David
Pointcheval, editor, CT-RSA, volume 3860 of LNCS, pages 208–225. Springer, 2006.

[TPR13] Adrian Thillard, Emmanuel Prouff, and Thomas Roche. Success through Confidence:
Evaluating the Effectiveness of a Side-Channel Attack. In Guido Bertoni and Jean-
Sébastien Coron, editors, CHES, volume 8086 of Lecture Notes in Computer Science,
pages 21–36. Springer, 2013.

[TV04a] Kris Tiri and Ingrid Verbauwhede. A Logic Level Design Methodology for a Secure
DPA Resistant ASIC or FPGA Implementation. In DATE’04, pages 246–251. IEEE
Computer Society, February 2004. Paris, France. DOI: 10.1109/DATE.2004.1268856.

[TV04b] Kris Tiri and Ingrid Verbauwhede. Place and Route for Secure Standard Cell De-
sign. In Kluwer, editor, Proceedings of WCC / CARDIS, pages 143–158, Aug 2004.
Toulouse, France.

[TV06] Kris Tiri and Ingrid Verbauwhede. A digital design flow for secure integrated circuits.
IEEE Trans. on CAD of Integrated Circuits and Systems, 25(7):1197–1208, 2006.

[ZJRR12] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. Cross-VM
side channels and their use to extract private keys. In Ting Yu, George Danezis,
and Virgil D. Gligor, editors, ACM Conference on Computer and Communications
Security, pages 305–316. ACM, 2012.

21

http://hal.archives-ouvertes.fr/hal-00410135/en/
http://hal.archives-ouvertes.fr/hal-00410135/en/

A paioli

The goal of paioli10 (Power Analysis Immunity by Offsetting Leakage Intensity) is to protect as-
sembly code against power analysis attacks such as DPA (differential power analysis) and CPA
(correlation power analysis), and to formally prove the efficiency of the protection. To this end,
it implements the automatic insertion of a balancing countermeasure, namely DPL (dual-rail with
precharge logic), in assembly code (for now limited to bitsliced block-cipher type of algorithms).
Independently, it is able to statically verify if the power consumption of a given assembly code
is correctly balanced with regard to a leakage model (e.g., the Hamming weight of values, or the
Hamming distance of values updates).

paioli [options] <input-file>

-bf Bit to use as F is DPL macros (default: 1)

-bt Bit to use as T is DPL macros (default: 0)

-po Less significant bit of the DPL pattern for DPL LUT access

(default: 0)

-cl Compact the DPL look-up table (LUT) if present

-la Address in memory where to put the DPL LUT (default: 0)

-r1 Register number of one of the three used by DPL macros

(default: 20)

-r2 Register number of one of the three used by DPL macros

(default: 21)

-r3 Register number of one of the three used by DPL macros

(default: 22)

-a Adapter for custom assembly language

-o asm output (default: no output)

-l Only check syntax if present

-d Perform DPL transformation of the code if present

-v Perform leakage verification if present

-s Perform simulation if present

-r Register count for simulation (default: 32)

-m Memory size for simulation (default: 1024)

-M range of memory to display after simulation

-R range of registers to display after simulation

The rest of this section details its features.

Adapters. To easily adapt it to any assembly language, it has a system of plugins (which we call
“adapters”) that allows to easily write a parser and a pretty-printer for any language and to use
them instead of the internal parser and pretty-printer (which are made for the internal language
we use, see Sec. 3.1) without having to recompile the whole tool.

DPL transformation. If asked so, paioli is able to automatically apply the DPL transformation
as explained in Sec. 3.2. It takes as arguments which bits to use for the DPL protocol, the offset at
which to place the pattern for look-up tables (for example, we used an offset of 1 to avoid resorting
to the least significant bit which leaks differently), and where in memory should the look-up tables
start. Given these parameters, the tool verifies that they are valid and consistent according to
the DPL protocol, and then it generates the DPL balanced code corresponding to the input code,

10http://pablo.rauzy.name/sensi/paioli.html

22

http://pablo.rauzy.name/sensi/paioli.html

including the code for look-up tables initialization. Optionally, the tool is able to compact the look-
up tables (since they are sparse), still making sure that their addresses respect the DPL protocol
(Sec. 2.2).

Simulation. If asked so, paioli can simulate the execution of the code after its optional DPL
transformation. The simulator is equipped to do the balance verification proof (see Sec. 4) but it
is not mandatory to do the balance analysis when running it. It takes as parameters the size of
the memory and the number of register to use, and initializes them to the set of two DPL encoded
values of 1 and 0 corresponding to the given DPL parameters. The tool can optionally display the
content of selected portions of the memory or of chosen registers after execution, which is useful
for inspection and debugging purpose for example.

Balance verification. The formal verification of the balance of the code is an essential function-
ality of the tool. Indeed, bugs occur even when having a thorough and comprehensive specification,
thus we believe that it is not sufficient to have a precise and formally proven method for generating
protected code, but that the results should be independently verified (see Sec. 4).

B Characterization of the Atmel ATmega163 AVR Micro-Controller

Fig. 5 shows the leakage level computed using NICV [BDGN14a] for each bit of the Atmel AT-
mega163 AVR smartcard that we used for our tests (see Sec. 5.1). We can see the first bit leaks
very differently from the others. Thus it is not a good candidate to appear in the bit pair used for
the DPL protocol.

0.0

1.0

0.5

N
IC

V

Time (restarts for each bit)
bit 0 bit 5bit 3bit 1 bit 6bit 4bit 2 bit 7

Figure 5: Leakage during unprotected encryption for each bit on ATmega163.

C DPL Macro for the AVR Micro-Controller

Once we profiled our smartcard as described in Sec. 5.1, we decided to use the bits 1 and 2 for the
DPL protocol (xxxxxXXx), that is, the DPL value of 1 becomes 2 and the DPL value of 0 becomes
4. To avoid using the least significant bit (which leaks very differently from the others), we decided
to align the two DPL bits for look-up table access starting on the bit 1 rather than 0 (xxxXXXXx).
With these settings, the DPL macro automatically generated by paioli is presented in Fig. 6 (it

23

(a) Univariate CPA attack on unprotected AES.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Undefended implementation of AES

Traces count

S
u
cc
es
s
ra
te

80% Success rate : 15 traces

(b) Bi-variate 2O-CPA on 1st-order protected AES.

0 100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2O-DPA on 1st order masked implementation of AES

Traces count

S
u
cc
es
s
ra
te

80% Success rate : 336 traces

Figure 7: Attacking AES on the ATmega163 : success rates.

follows the same conventions as Fig. 2). As we can see the only modification is the mask applied
in the logical and instructions which is now 6 instead of 3 to reflect the new DPL pattern.

r1 ← r0
r1 ← a
r1 ← r1 ∧ 6
r1 ← r1 � 1
r1 ← r1 � 1
r2 ← r0
r2 ← b
r2 ← r2 ∧ 6
r1 ← r1 ∨ r2
r3 ← r0
r3 ← op[r1]
d ← r0
d ← r3

Figure 6: DPL macro for
d = a op b on the

ATmega163.

Note that the least significant bit is now unused by the DPL
protocol and allowed paioli to compact the look-up tables used by
the DPL macros. Indeed, their addresses need to be of the form
/.+0000./ leaving the least significant bit free and thus allowing to
interleave two look-up tables one on another without overlapping of
their actually used cells (see Sec. 3.2).

D Attacks

D.1 Attack results on masking (AES)

For the sake of comparison, we provide attack results on the same
smartcard tested with the same setup. Figure 7 shows the success
rate for the attack on the first byte of an AES.

We estimate the number of traces for a successful attack as the ab-
scissa where the success rate curve first intersects the 80% horizontal
line.

D.2 Attack results on DPL (present)

Fig. 9 shows the success rates and the correlation curves when attacking our three implementations
of present. The sensitive variable we consider is in line with the choice of Kocher et al. in their
CRYPTO’99 paper [KJJ99]: it is the least significant bit of the output of the substitution boxes
(that are 4× 4 in present).

In Fig. 8, we give, for the unprotected bitslice implementation, the correspondence between the
operations of present and the NICV trace. The zones of largest NICV correspond to operations
that access (read or write) sensitive data in RAM. To make the attacks more powerful, they are not
done on the maximal correlation point over the full first round of present11 (500, 000 samples),

11Note that using the maximum correlation point to attack the DPL implementations resulted in the success

24

0 50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

Time (# of samples (x1000))

N
IC

V

AddRoundKey sBoxLayer pLayer The key shedule Round 2

Round 1, IncRoundCounter

Figure 8: Correspondence between NICV and the instructions of present.

but rather on a smaller interval (of only 140 samples, i.e., one clock period of the device) of high
potential leakage revealed by the NICV computations, namely sBoxLayer.

This makes the attack much more powerful and has to be taken into account when interpreting
its results. In fact, the results we present are very pessimistic: we used our knowledge of the key
to select a narrow part of the traces where we knew that the attack would work, and we used the
NICV [BDGN14a] to select the point where the SNR of the CPA attack is the highest. We did this
so we could show the improvement in security due to the characterization of the hardware. Indeed,
without this “cheating attacker” (for the lack of a better term), i.e., when we use a monobit CPA
taking into account the maximum of correlation over the full round, as a normal attacker would
do, the unprotected implementation breaks using about 400 traces (resp. 138 for the “cheating
attacker”), while the poorly balanced one is still not broken using 100, 000 traces (resp. about
1, 500). We do not have more traces than that so we can only say that with an experimental SNR
of 15 (which is quite large so far), the security gain is more than 250× and may be much higher
with the hardware characterization taken into account as our results with the “cheating attacker”
shows. Another way of understanding the 250-fold data complexity increase for the CPA is to turn
this figure into a reduction of the SNR: according to [TPR13, BDGN14b], our DPL countermeasure
has attenuated the SNR by a factor of at least

√
250 ≈ 16.

rate remaining always at ≈ 1/16 (there are 24 key guesses in present when targeting the first round, because the
substitution boxes are 4× 4) in average (at least on the number of traces we had (100, 000)) on both on them.

25

(a) Monobit CPA attack on unprotected bitslice implementation.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Bitslice, unprotected

Traces count

Su
cc

es
s

ra
te

80% Success rate : 138 traces

0 50 100 150 200 250 300 350 400 450

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

CPA for all 16 guesses (correct one in black), after 400 traces

Time (# of samples (x1000))

C
or

re
la

tio
n

(b) Monobit CPA attack on poorly balanced DPL implementation (bits 0 and 1).

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Bitslice DPL, poorly balanced

Traces count

Su
cc

es
s

ra
te

80% Success rate : 1470 traces (optimistic)

0 5 10 15 20 25 30 35 40

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

CPA for all 16 guesses (correct one in black), after 9000 traces

Time (# of samples (x1000))

C
or

re
la

tio
n

(c) Monobit CPA attack on better balanced DPL implementation (bits 1 and 2).

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Bitslice DPL, better balanced

Traces count

Su
cc

es
s

ra
te

80% Success rate : 4810 traces

0 5 10 15 20 25 30 35 40

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

CPA for all 16 guesses (correct one in black), after 9000 traces

Time (# of samples (x1000))

C
or

re
la

tio
n

Figure 9: Attacks on our three implementations of present;
Left : success rates (estimated with 100 attacks/step), and

Right : CPA curves (whole first round in (a), and only sBoxLayer for (b) and (c)).

26

Countermeasures Against High-Order

Fault-Injection Attacks on CRT-RSA

Pablo Rauzy and Sylvain Guilley
Institut Mines-Télécom ; Télécom ParisTech ; CNRS LTCI

{firstname.lastname}@telecom-paristech.fr

Abstract

In this paper we study the existing CRT-RSA countermeasures against fault-injection at-
tacks. In an attempt to classify them we get to achieve deep understanding of how they work.
We show that the many countermeasures that we study (and their variations) actually share
a number of common features, but optimize them in different ways. We also show that there
is no conceptual distinction between test-based and infective countermeasures and how either
one can be transformed into the other. Furthermore, we show that faults on the code (skipping
instructions) can be captured by considering only faults on the data. These intermediate results
allow us to improve the state of the art in several ways: (a) we fix an existing and that was
known to be broken countermeasure (namely the one from Shamir); (b) we drastically optimize
an existing countermeasure (namely the one from Vigilant) which we reduce to 3 tests instead of
9 in its original version, and prove that it resists not only one fault but also an arbitrary number
of randomizing faults; (c) we also show how to upgrade countermeasures to resist any given
number of faults: given a correct first-order countermeasure, we present a way to design a prov-
able high-order countermeasure (for a well-defined and reasonable fault model). Finally, we pave
the way for a generic approach against fault attacks for any modular arithmetic computations,
and thus for the automatic insertion of countermeasures.

1 Introduction

Private information protection is a highly demanded feature, especially in the current context of
global defiance against most infrastructures, assumed to be controlled by governmental agencies.
Properly used cryptography is known to be a key building block for secure information exchange.
However, in addition to the threat of cyber-attacks, implementation-level hacks must also be con-
sidered seriously. This article deals specifically with the protection of a decryption or signature
crypto-system (called RSA [RSA78]) in the presence of hardware attacks (e.g., we assume the
attacker can alter the RSA computation while it is being executed).

It is known since 1997 (with the BellCoRe attack by Boneh et al. [BDL97]) that injecting faults
during the computation of CRT-RSA (CRT for “Chinese Remainder Theorem”) could yield to
malformed signatures that expose the prime factors (p and q) of the public modulus (N = p · q).
Notwithstanding, computing without the fourfold acceleration conveyed by the CRT optimization is
definitely not an option in practical applications. Therefore, many countermeasures have appeared.
Most of the existing countermeasures were designed with an attack-model consisting in a single fault
injection. The remaining few attempts to protect against second-order fault attacks (i.e., attacks
with two faults).

1

Looking at the history of the development of countermeasures against the BellCoRe attack, we
see that many countermeasures are actually broken in the first place. Some of them were fixed by
their authors and/or other people, such as the countermeasure proposed by Vigilant [Vig08a], which
was fixed by Coron et al. [CGM+10] and then simplified by Rauzy & Guilley [RG14b]; some simply
abandoned, such as the one by Shamir [Sha99]. Second-order countermeasures are no exception to
that rule, as demonstrated with the countermeasure proposed by Ciet & Joye [CJ05], which was
fixed later by Dottax et al. [DGRS09]. Such mistakes can be explained by two main points:
• the almost nonexistent use of formal methods in the field of implementation security, which

can itself be explained by the difficulty to properly model the physical properties of an im-
plementation which are necessary to study side-channel leakages and fault-injection effects;
• the fact that most countermeasures were developed by trial-and-error engineering, accumu-

lating layers of intermediate computations and verifications to patch weaknesses until a fixed
point was reached, even if the inner workings of the countermeasure were not fully understood.

Given their development process, it is likely the case that existing second-order countermeasures
would not resist third-order attacks, and strengthening them against such attacks using the same
methods will not make them resist fourth-order, etc.

The purpose of this paper is to remedy to these problems. First-order countermeasures have
started to be formally studied by Christofi et al. [CCGV13], who have been followed by Rauzy & Guil-
ley [RG14a, RG14b], and Barthe et al. [BDF+14]. To our best knowledge, no such work has been
attempted on high-order countermeasures. Thus, we should understand the working factors of a
countermeasure, and use that knowledge to informedly design a generic high-order countermeasure,
either one resisting any number of faults, or one which could be customized to protect against n
faults, for any given n > 1.

Notice that we consider RSA used in a mode where the BellCoRe attack is applicable; this
means that we assume that the attacker can choose (but not necessarily knows) the message that is
exponentiated, which is the case in decryption mode or in (outdated) deterministic signature mode
(e.g., PKCS #1 v1.5). In some other modes, formal proofs of security have been conducted [CM09,
BDF+14].

Contributions In this paper we propose a classification of the existing CRT-RSA countermea-
sures against the BellCoRe fault-injection attacks. Doing so, we raise questions whose answers lead
to a deeper understanding of how the countermeasures work. We show that the many countermea-
sures that we study (and their variations) are actually applying a common protection strategy but
optimize it in different ways (Sec. 4). We also show that there is no conceptual distinction between
test-based and infective countermeasures and how either one can be transformed into the other
(Prop. 2). Furthermore, we show that faults on the code (skipping instructions) can be captured
by considering only faults on the data (Lem. 1). These intermediate results allow us to improve
the state of the art in several ways:
• we fix an existing and that is known to be broken countermeasure (Alg. 10);
• we drastically optimize an existing countermeasure, while at the same time we transform it

to be infective instead of test-based (Alg. 11);
• we also show how to upgrade countermeasures to resist any given number of faults: given a

correct first-order countermeasure, we present a way to design a provable high-order counter-
measure for a well defined and reasonable fault model (Sec. 4.2).

2

Finally, we pave the way for a generic approach against fault attacks for any modular arithmetic
computations, and thus for the automatic insertion of countermeasures.

Organization of the paper We recall the CRT-RSA cryptosystem and the BellCoRe attack in
Sec. 2. Then, to better understand the existing countermeasures, we attempt to classify them in
Sec. 3, which also presents the state of the art. We then try to capture what make the essence
of a countermeasure in Sec. 4, and use that knowledge to determine how to build a high-order
countermeasure. We last use our findings to build better countermeasures by fixing and simplifying
existing ones in Sec. 5. A discussion about possible attacks that would circumvent the assumptions
of our formal model is given in Sec. 6. Conclusions and perspectives are drawn in Sec. 7. The
appendices contain the detail of some secondary results.

2 CRT-RSA and the BellCoRe Attack

This section summarizes known results about fault attacks on CRT-RSA (see also [Koç94], [TW12,
Chap. 3] and [JT11, Chap. 7 & 8]). Its purpose is to settle the notions and the associated notations
that will be used in the later sections, to present our novel contributions.

2.1 RSA

RSA is both an encryption and a signature scheme. It relies on the fact that for any message
0 ≤ M < N , (Md)e ≡ M mod N , where d ≡ e−1 mod ϕ(N), by Euler’s theorem1. In this
equation, ϕ is Euler’s totient function, equal to ϕ(N) = (p − 1) · (q − 1) when N = p · q is a
composite number, product of two primes p and q. For example, if Alice generates the signature
S = Md mod N , then Bob can verify it by computing Se mod N , which must be equal to M
unless Alice is only pretending to know d. Therefore (N, d) is called the private key, and (N, e) the
public key. In this paper, we are not concerned about the key generation step of RSA, and simply
assume that d is an unknown number in J1, ϕ(N) = (p−1) · (q−1)J. Actually, d can also be chosen

to be equal to the smallest value e−1 mod λ(N), where λ(N) = (p−1)·(q−1)
gcd(p−1,q−1) is the Carmichael

function (see PKCS #1 v2.1, §3.1).

2.2 CRT-RSA

The computation of Md mod N can be speeded-up by a factor of four using the Chinese Remainder
Theorem (CRT). Indeed, numbers modulo p and q are twice as short as those modulo N . For
example, for 2, 048 bits RSA, p and q are 1, 024 bits long. CRT-RSA consists in computing Sp = Md

mod p and Sq = Md mod q, which can be recombined into S with a limited overhead. Due to
the little Fermat theorem (the special case of the Euler theorem when the modulus is a prime),
Sp = (M mod p)d mod (p−1) mod p. This means that in the computation of Sp, the processed
data have 1, 024 bits, and the exponent itself has 1, 024 bits (instead of 2, 048 bits). Thus the
multiplication is four times faster and the exponentiation eight times faster. However, as there are
two such exponentiations (modulo p and q), the overall CRT-RSA is roughly speaking four times
faster than RSA computed modulo N .

1We use the usual convention in all mathematical equations, namely that the “mod” operator has the lowest
binding precedence, i.e., a× b mod c× d represents the element a× b in Zc×d.

3

This acceleration justifies that CRT-RSA is always used if the factorization of N as p · q is
known. In CRT-RSA, the private key has a richer structure than simply (N, d): it is actually the
5-tuple (p, q, dp, dq, iq), where:
• dp

.
= d mod (p− 1),

• dq
.
= d mod (q − 1), and

• iq
.
= q−1 mod p.

The CRT-RSA algorithm is presented in Alg. 1. It is straightforward to check that the signature
computed at line 3 belongs to J0, p · q − 1K. Consequently, no reduction modulo N is necessary
before returning S.

Algorithm 1: Unprotected CRT-RSA

Input : Message M , key (p, q, dp, dq, iq)
Output: Signature Md mod N

1 Sp = Mdp mod p // Intermediate signature in Zp

2 Sq = Mdq mod q // Intermediate signature in Zq

3 S = Sq + q · (iq · (Sp − Sq) mod p) // Recombination in ZN (Garner’s method [Gar65])

4 return S

2.3 The BellCoRe Attack

In 1997, a dreadful remark has been made by Boneh, DeMillo and Lipton [BDL97], three staff of
Bell Communication Research: Alg. 1 could reveal the secret primes p and q if the line 1 or 2 of the
computation is faulted, even in a very random way. The attack can be expressed as the following
proposition.

Proposition 1 (BellCoRe attack). If the intermediate variable Sp (resp. Sq) is returned faulted

as Ŝp (resp. Ŝq)2, then the attacker gets an erroneous signature Ŝ, and is able to recover q (resp.

p) as gcd(N,S − Ŝ).

Proof. For any integer x, gcd(N, x) can only take 4 values:
• 1, if N and x are coprime,
• p, if x is a multiple of p,
• q, if x is a multiple of q,
• N , if x is a multiple of both p and q, i.e., of N .

In Alg. 1, if Sp is faulted (i.e., replaced by Ŝp 6= Sp), then S − Ŝ = q · ((iq · (Sp − Sq) mod p)−
(iq ·(Ŝp−Sq) mod p)), and thus gcd(N,S− Ŝ) = q. If Sq is faulted (i.e., replaced by Ŝq 6= Sq), then

S − Ŝ ≡ (Sq − Ŝq)− (q mod p) · iq · (Sq − Ŝq) ≡ 0 mod p because (q mod p) · iq ≡ 1 mod p, and

thus S− Ŝ is a multiple of p. Additionally, S− Ŝ is not a multiple of q. So, gcd(N,S− Ŝ) = p.

Before continuing to the next section, we will formalize our attack model by defining what is a
fault injection and what is the order of an attack.

2In other papers, the faulted variables (such as X) are written either as X∗ or X̃; in this paper, we use a hat
which can stretch to cover the adequate portion of the expression, as it allows to make an unambiguous difference
between X̂e and X̂e.

4

Definition 1 (Fault injection). During the execution of an algorithm, the attacker can:
• modify any intermediate value by setting it to either a random value (randomizing fault) or

zero (zeroing fault); such a fault can be either permanent (e.g., in memory) or transient (e.g.,
in a register or a bus);
• skip any number of consecutive instructions (skipping fault).

At the end of the computation the attacker can read the result returned by the algorithm.

Remark 1. This fault injection model implies that faults can be injected very accurately in timing
(the resolution is the clock period), whereas the fault locality in space is poor (the attacker cannot
target a specific bit). This models an attacker who is able to identify the sequence of operations by
a simple side-channel analysis, but who has no knowledge of the chip internals. Such attack model
is realistic for designs where the memories are scrambled and the logic gates randomly routed (in
a sea of gates).

Lemma 1. The effect of a skipping fault (i.e., fault on the code) can be captured by considering
only randomizing and zeroing faults (i.e., fault on the data).

Proof. Indeed, if the skipped instructions are part of an arithmetic operation:
• either the computation has not been done at all and the value in memory where the result is

supposed to be stays zero (if initialized) or random (if not),
• or the computation has partly been done and the value written in memory as its result is

thus pseudo-randomized (and considered random at our modeling level).
If the skipped instruction is a branching instruction, then it is equivalent to do a zeroing fault on
the result of the branching condition to make it false and thus avoid branching.

Definition 2 (Attack order). We call order of the attack the number of fault injections in the
computation. An attack is said to be high-order if its order is strictly more than 1.

3 Classifying Countermeasures

The goal of a countermeasure against fault-injection attacks is to avoid returning a compromised
value to the attacker. To this end, countermeasures attempt to verify the integrity of the compu-
tation before returning its result. If the integrity is compromised, then the returned value should
be a random number or an error constant, in order not to leak any information.

An obvious way of achieving that goal is to repeat the computation and compare the results,
but this approach is very expensive in terms of computation time. The same remark applies to
the verification of the signature (notice that e can be recovered for this purpose from the 5-tuple
(p, q, dp, dq, iq), as explained in App. A). In this section we explore the different methods used by

the existing countermeasures to verify the computation integrity faster than (Md)e
?≡M mod N .

Besides, we recall that such a verification is prone to other attacks [YJ00], and must thus be avoided.

3.1 Shamir’s or Giraud’s Family of Countermeasures

To the authors knowledge, there are two main families of countermeasures: those which are descen-
dants of Shamir’s countermeasure [Sha99], and those which are descendants of Giraud’s [Gir06].

5

The countermeasures in Giraud’s family avoid replicating the computations using particular
exponentiation algorithms. These algorithms keep track of variables involved in intermediate steps;
those help verifying the consistency of the final results by a consistency check of an invariant that
is supposed to be spread till the last steps. This idea is illustrated in Alg. 2, which resembles the
one of Giraud. The test at line 5 verifies that the recombined values S and S′ (recombination
of intermediate steps of the exponentiation) are consistent. Example of other countermeasures
in this family are the ones of Boscher et al. [BNP07], Rivain [Riv09] (and its recently improved
version [LRT14]), or Kim et al. [KKHH11]. The former two mainly optimize Giraud’s, while
the latter introduce an infective verification based on binary masks. The detailed study of the
countermeasures in Giraud’s family is left as future work.

Algorithm 2: CRT-RSA with a Giraud’s family countermeasure

Input : Message M , key (p, q, dp, dq, iq)
Output: Signature Md mod N , or error

1 (Sp, S
′
p) = ExpAlgorithm(M,dp) // ExpAlgorithm(a, b) returns (ab, ab−1)

2 (Sq, S
′
q) = ExpAlgorithm(M,dq)

3 S = Sq + q · (iq · (Sp − Sq) mod p) // Recombination

4 S′ = S′q + q · (iq · (S′p − S′q) mod p) // Recombination for verification

5 if M · S′ 6≡ S mod pq then return error

6 return S

Indeed, the rest of our paper is mainly concerned with Shamir’s family of countermeasures. The
countermeasures in Shamir’s family rely on a kind of “checksum” of the computation using smaller
numbers (the checksum is computed in rings smaller than the ones of the actual computation). The
base-two logarithm of the smaller rings cardinal is typically equal to 32 or to 64 (bits): therefore,
assuming that the faults are randomly distributed, the probability of having an undetected fault is
2−32 or 2−64, i.e., very low. In the sequel, we will make a language abuse by considering that such
probability is equal to zero. We also use the following terminology:

Notation 1. Let a a big number and b a small number, such that they are coprime. We call the
ring Zab an overring of Za, and the ring Zb a subring of Zab.

Remark 2. RSA is friendly to protections by checksums because it computes in rings Za where a
is either a large prime number (e.g., a = p or a = q) or the product of large prime numbers (e.g.,
a = p ·q). Thus, any small number b > 1 is coprime with a, and so we have an isomorphism between
the overring Zab and the direct product of Za and Zb, i.e., Zab

∼= Za × Zb. This means that the
Chinese Remainder Theorem applies. Consequently, the nominal computation and the checksum
can be conducted in parallel in Zab.

The countermeasures attempt to assert that some invariants on the computations and the
checksums hold. There are many different ways to use the checksums and to verify these invariants.
In the rest of this section we review these ways while we attempt to classify countermeasures and
understand better what are the necessary invariants to verify.

6

3.2 Test-Based or Infective

A first way to classify countermeasures is to separate those which consist in step-wise internal checks
during the CRT computation and those which use an infective computation strategy to make the
result unusable by the attacker in case of fault injection.

Definition 3 (Test-based countermeasure). A countermeasure is said to be test-based if it attempts
to detect fault injections by verifying that some arithmetic invariants are respected, and branch
to return an error instead of the numerical result of the algorithm in case of invariant violation.
Examples of test-based countermeasures are the ones of Shamir [Sha99], Aumüller et al. [ABF+02],
Vigilant [Vig08a], or Joye et al. [JPY01].

Definition 4 (Infective countermeasure). A countermeasure is said to be infective if rather than
testing arithmetic invariants it uses them to compute a neutral element of some arithmetic operation
in a way that would not result in this neutral element if the invariant is violated. It then uses the
results of these computations to infect the result of the algorithm before returning it to make it
unusable by the attacker (thus, it does not need branching instructions). Examples of infective
countermeasures are the ones by Blömer et al. [BOS03] (and the variant by Liu et al. [LKW06]),
Ciet & Joye [CJ05], or Kim et al. [KKHH11].

The extreme similarity between the verifications in the test-based countermeasure of Joye et
al. [JPY01] (see Alg. 3, line 9) and the infective countermeasure of Ciet & Joye [CJ05] (see Alg. 4,
lines 10 and 11) is striking, but it is actually not surprising at all, as we will discover in Prop. 2.

Algorithm 3: CRT-RSA with Joye et al.’s countermeasure [JPY01]

Input : Message M , key (p, q, dp, dq, iq)
Output: Signature Md mod N , or error

1 Choose two small random integers r1 and r2.
2 Store in memory p′ = p · r1, q′ = q · r2, i′q = q′−1 mod p′, N = p · q.

3 S′p = Mdp mod ϕ(p′) mod p′ // Intermediate signature in Zpr1

4 Spr = Mdp mod ϕ(r1) mod r1 // Checksum in Zr1

5 S′q = Mdq mod ϕ(q′) mod q′ // Intermediate signature in Zqr2

6 Sqr = Mdq mod ϕ(r2) mod r2 // Checksum in Zr2

7 Sp = S′p mod p // Retrieve intermediate signature in Zp

8 Sq = S′q mod q // Retrieve intermediate signature in Zq

9 if S′p 6≡ Spr mod r1 or S′q 6≡ Sqr mod r2 then return error

10 return S = Sq + q · (iq · (Sp − Sq) mod p) // Recombination in ZN

Proposition 2 (Equivalence between test-based and infective countermeasures). Each test-based
(resp. infective) countermeasure has a direct equivalent infective (resp. test-based) countermeasure.

Proof. The invariants that must be verified by countermeasures are modular equality, so they are

of the form a
?≡ b mod m, where a, b and m are arithmetic expressions.

It is straightforward to transform this invariant into a Boolean expression usable in test-based
countermeasures: if a != b [mod m] then return error.

7

Algorithm 4: CRT-RSA with Ciet & Joye’s countermeasure [CJ05]

Input : Message M , key (p, q, dp, dq, iq)
Output: Signature Md mod N , or a random value in ZN

1 Choose small random integers r1, r2, and r3.
2 Choose a random integer a.
3 Initialize γ with a random number
4 Store in memory p′ = p · r1, q′ = q · r2, i′q = q′−1 mod p′, N = p · q.

5 S′p = a+Mdp mod ϕ(p′) mod p′ // Intermediate signature in Zpr1

6 Spr = a+Mdp mod ϕ(r1) mod r1 // Checksum in Zr1

7 S′q = a+Mdq mod ϕ(q′) mod q′ // Intermediate signature in Zqr2

8 Sqr = a+Mdq mod ϕ(r2) mod r2 // Checksum in Zr2

9 S′ = S′q + q′ · (i′q · (S′p − S′q) mod p′) // Recombination in ZNr1r2

10 c1 = S′ − Spr + 1 mod r1 // Invariant for the signature modulo p

11 c2 = S′ − Sqr + 1 mod r2 // Invariant for the signature modulo q

12 γ = (r3 · c1 + (2l − r3) · c2)/2l // γ = 1 if c1 and c2 have value 1

13 return S = S′ − aγ mod N // Infection and result retrieval in ZN

To use it in infective countermeasures, it is as easy to verify the same invariant by computing a
value which should be 1 if the invariant holds: c := a - b + 1 mod m. The numbers obtained this
way for each invariant can then be multiplied and their product c∗, which is 1 only if all invariants
are respected, can be used as an exponent on the algorithm’s result to infect it if one or more
of the tested invariants are violated. Indeed, when the attacker perform the BellCoRe attack by

computing gcd(N,S− Ŝc∗) as defined in Prop. 1, then if c∗ is not 1 the attack would not work.

By Prop. 2, we know that there is an equivalence between test-based and infective counter-
measures. This means that in theory any attack working on one kind of countermeasure will be
possible on the equivalent countermeasure of the other kind. However, we remark that in practice
it is harder to do a zeroing fault on an intermediate value (especially if it is the result of a computa-
tion with big numbers) in the case of an infective countermeasure, than it is to skip one branching
instruction in the case of a test-based countermeasure. We conclude from this the following rule
of thumb: it is better to use the infective variant of a countermeasure. In addition, it is generally
the case that code without branches is safer (think of timing attacks or branch predictor attacks
on modern CPUs).

Note that if a fault occurs, c∗ is not 1 anymore and thus the computation time required to
compute Sc∗ might significantly increase. This is not a security problem, indeed, taking longer
to return a randomized value in case of an attack is not different from rapidly returning an error
constant without finishing the computation first as it is done in the existing test-based counter-
measures. In the worst case scenario, the additional time would be correlated to the induced fault,
but we assume the fault to be controlled by the attacker already.

8

3.3 Intended Order

Countermeasures can be classified depending on their order, i.e., the maximum order of the attacks
(as per Def. 2) that they can protect against.

In the literature concerning CRT-RSA countermeasures against fault-injection attacks, most
countermeasures claim to be first-order, and a few claim second-order resistance. For instance,
the countermeasures by Aumüller et al. [ABF+02] and the one by Vigilant [Vig08a] are described
as first-order by their authors, while Ciet & Joye [CJ05] describe a second-order fault model and
propose a countermeasure which is supposed to resist to this fault model, and thus be second-order.

However, using the finja3 tool which has been open-sourced by Rauzy & Guilley [RG14a], we
found out that the countermeasure of Ciet & Joye is in fact vulnerable to second-order attacks
(in our fault model of Def. 1). This is not very surprising. Indeed, Prop. 2 proves that injecting
a fault, and then skipping the invariant verification which was supposed to catch the first fault
injection, is a second-order attack strategy which also works for infective countermeasures, except
the branching-instruction skip has to be replaced by a zeroing fault. As expected, the attacks
we found using finja did exactly that. For instance a zeroing fault on S′p (resp. S′q) makes the
computation vulnerable to the BellCoRe attack, and a following zeroing fault on Spr (resp. Sqr)
makes the verification pass anyway. To our knowledge our attack is new. It is indeed different from
the one Dottax et al. [DGRS09] found and fixed in their paper, which was an attack on the use
of γ (see line 12 of Alg. 4). It is true that their attack model only allows skipping faults (as per
Def. 1) for the second injection, but we have concerns about this:
• What justifies this limitation on the second fault? Surely if the attackers are able to inject

two faults and can inject a zeroing fault once they can do it twice.
• Even considering their attack model, a zeroing fault on an intermediate variable x can in

many cases be obtained by skipping the instructions where the writing to x happens.
• The fixed version of the countermeasure by Dottax et al. [DGRS09, Alg. 8, p. 13] makes

it even closer to the one of Joye et al. by removing the use of a and γ. It also removes
the result infection part and instead returns S along with values that should be equal if no
faults were injected, leaving “out” of the algorithm the necessary comparison and branching
instructions which are presented in a separate procedure [DGRS09, Proc. 1, p. 11]. The
resulting countermeasure is second-order resistant (in their attack model) only because the
separate procedure does the necessary tests twice (it would indeed break at third-order unless
an additional repetition of the test is added, etc.).

An additional remark would be that the algorithms of intended second-order countermeasures
does not look very different from others. Moreover, Rauzy & Guilley [RG14a, RG14b] exposed
evidence that the intendedly first-order countermeasures of Aumüller et al. and Vigilant actually
offer the same level of resistance against second-order attacks, i.e., they resist when the second
injected fault is a randomizing fault (or a skipping fault which amounts to a randomizing fault).

3.4 Usage of the Small Rings

In most countermeasures, the computation of the two intermediate signatures modulo p and modulo
q of the CRT actually takes place in overrings. The computation of Sp (resp. Sq) is done in Zpr1

(resp. Zqr2) for some small random number r1 (resp. r2) rather than in Zp (resp. Zq). This allows

3http://pablo.rauzy.name/sensi/finja.html (we used the commit 782384a version of the code).

9

http://pablo.rauzy.name/sensi/finja.html

the retrieval of the results by reducing modulo p (resp. q) and verifying the signature modulo r1

(resp. r2), or, if it is done after the CRT recombination, the results can be retrieved by reducing
modulo N = p · q. The reduction in the small subrings Zr1 and Zr2 is used as the checksums for
verifying the integrity of the computation. It works because small random numbers are necessarily
coprime with a big prime number.

An interesting part of countermeasures is how they use the small subrings to verify the integrity
of the computations. Almost all the various countermeasures we studied had different ways of
using them. However, they can be divided in two groups. On one side there are countermeasures
which use the small subrings to verify the integrity of the intermediate CRT signatures and of the
recombination directly but using smaller numbers, like Blömer et al.’s countermeasure [BOS03], or
Ciet & Joye’s one [CJ05]. On the other side, there are countermeasures which use some additional
arithmetic properties to verify the necessary invariants indirectly in the small subrings. Contrary
to the countermeasures in the first group, the ones in the second group use the same value r for r1

and r2. The symmetry obtained with r1 = r2 is what makes the additional arithmetic properties
hold, as we will see.

3.4.1 Verification of the Intermediate CRT Signatures

The countermeasure of Blömer et al. [BOS03] uses the small subrings to verify the intermediate
CRT signatures. It is exposed in Alg. 5. This countermeasure needs access to d directly rather
than dp and dq as the standard interface for CRT-RSA suggests, in order to compute d′p = d

mod ϕ(p · r1) and d′q = d mod ϕ(q · r2), as well as their inverse e′p = d′p
−1 mod ϕ(p · r1) and

e′q = d′q
−1 mod ϕ(q · r2) to verify the intermediate CRT signatures.

We can see in Alg. 5 that these verifications (lines 6 and 7) happen after the recombination
(line 5) and retrieve the checksums in Zr1 (for the p part of the CRT) and Zr2 (for the q part) from
the recombined value S′. It allows these tests to verify the integrity of the recombination at the
same time as they verify the integrity of the intermediate CRT signatures.

Algorithm 5: CRT-RSA with Blömer et al.’s countermeasure [BOS03]

Input : Message M , key (p, q, d, iq)
Output: Signature Md mod N , or a random value in ZN

1 Choose two small random integers r1 and r2.
2 Store in memory p′ = p · r1, q′ = q · r2, i′q = q′−1 mod p′, N = p · q, N ′ = N · r1 · r2, d′p, d

′
q, e
′
p, e
′
q.

3 S′p = Md′p mod p′ // Intermediate signature in Zpr1

4 S′q = Md′q mod q′ // Intermediate signature in Zqr2

5 S′ = S′q + q′ · (i′q · (S′p − S′q) mod p′) // Recombination in ZNr1r2

6 c1 = M − S′e
′
p + 1 mod r1 // Invariant for the signature modulo p

7 c2 = M − S′e
′
q + 1 mod r2 // Invariant for the signature modulo q

8 return S = S′c1c2 mod N // Infection and result retrieval in ZN

10

3.4.2 Checksums of the Intermediate CRT Signatures

The countermeasure of Ciet & Joye [CJ05] uses the small subrings to compute checksums of the
intermediate CRT signatures. It is exposed in Alg. 4. Just as the previous one, the verifications
(lines 10 and 11) take place after the recombination (line 9) and retrieve the checksums in Zr1

(for the p part of the CRT) and Zr2 (for the q part) from the recombined value S′, which enables
the integrity verification of the recombination at the same time as the integrity verifications of the
intermediate CRT signatures.

We note that this is missing from the protection of Joye et al. [JPY01], presented in Alg. 3,
which does not verify the integrity of the recombination at all and is thus as broken as Shamir’s
countermeasure [Sha99]. The countermeasure of Ciet & Joye is a clever fix against the possible fault
attacks on the recombination of Joye et al.’s countermeasure, which also uses the transformation
that we described in Prop. 2 from a test-based to an infective countermeasure.

3.4.3 Overrings for CRT Recombination

In Ciet & Joye’s countermeasure the CRT recombination happens in an overring ZNr1r2 of ZN

while Joye et al.’s countermeasure extracts in Zp and Zq the results Sp and Sq of the intermediate
CRT signatures to do the recombination in ZN directly.

There are only two other countermeasures which do the recombination in ZN that we know of:
the one of Shamir [Sha99] and the one of Aumüller et al. [ABF+02]. The first one is known to be
broken, in particular because it does not check whether the recombination has been faulted at all.
The second one seems to need to verify 5 invariants to resist the BellCoRe attack4, which is more
than the only 2 required by the countermeasure of Ciet & Joye [CJ05] or by the one of Blömer et
al. [BOS03], while offering a similar level of protection (see [RG14a]). This fact led us to think that
the additional tests are necessary because the recombination takes place “in the clear”. But we
did not jump right away to that conclusion. Indeed, Vigilant’s countermeasure [Vig08a] does the
CRT recombination in the ZNr2 overring of ZN and seems to require 7 verifications5 to also offer
that same level of security (see [RG14b]). However, we remark that Shamir’s, Aumüller et al.’s,
and Vigilant’s countermeasures use the same value for r1 and r2.

3.4.4 Identity of r1 and r2

Some countermeasures, such as the ones of Shamir [Sha99], Aumüller et al. [ABF+02], and Vigi-
lant [Vig08a] use a single random number r to construct the overrings used for the two intermediate
CRT signatures computation. The resulting symmetry allows these countermeasures to take ad-
vantage of some additional arithmetic properties.

Shamir’s countermeasure In his countermeasure, which is presented in Alg. 6, Shamir uses a
clever invariant property to verify the integrity of both intermediate CRT signatures in a single
verification step (line 9). This is made possible by the fact that he uses d directly instead of dp
and dq, and thus the checksums in Zr of both the intermediate CRT signatures are supposed to be

4The original Aumüller et al.’s countermeasure uses 7 verifications because it also needs to check the integrity of
intermediate values introduced against simple power analysis, see [RG14a, Remark 1].

5Vigilant’s original countermeasure and its corrected version by Coron et al. [CGM+10] actually use 9 verifications
but were simplified by Rauzy & Guilley [RG14b] who removed 2 verifications.

11

equal if no fault occurred. Unfortunately, the integrity of the recombination is not verified at all.
We will see in Sec. 5.1 how to fix this omission. Besides, we notice that d can be reconstructed
from a usual CRT-RSA key (p, q, dp, dq, iq); we refer the reader to Appendix A.

Algorithm 6: CRT-RSA with Shamir’s countermeasure [Sha99]

Input : Message M , key (p, q, d, iq)
Output: Signature Md mod N , or error

1 Choose a small random integer r.

2 p′ = p · r
3 S′p = Md mod ϕ(p′) mod p′ // Intermediate signature in Zpr

4 q′ = q · r
5 S′q = Md mod ϕ(q′) mod q′ // Intermediate signature in Zqr

6 Sp = S′p mod p // Retrieve intermediate signature in Zp

7 Sq = S′q mod q // Retrieve intermediate signature in Zq

8 S = Sq + q · (iq · (Sp − Sq) mod p) // Recombination in ZN

9 if S′p 6≡ S′q mod r then return error

10 return S

Aumüller et al.’s countermeasure Contrary to Shamir, Aumüller et al. do verify the integrity
of the recombination in their countermeasure, which is presented in Alg. 7. To do this, they
straightforwardly check (line 10) that when reducing the result S of the recombination modulo p
(resp. q), the obtained value corresponds to the intermediate signature in Zp (resp. Zq). However,
they do not use d directly but rather conform to the standard CRT-RSA interface by using dp and
dq. Thus, they need another verification to check the integrity of the intermediate CRT signatures.
Their clever strategy is to verify that the checksums of Sp and Sq in Zr are conform to each other
(lines 11 to 13). For that they check whether Sp

dq is equal to Sq
dp in Zr, that is, whether the

invariant (Mdp)dq ≡ (Mdq)dp mod r holds.
The two additional tests on line 4 verify the integrity of p′ and q′. Indeed, if p or q happen

to be randomized when computing p′ or q′ the invariant verifications in Zr would pass but the
retrieval of the intermediate signatures in Zp or Zq would return random values, which would
make the BellCoRe attack work. These important verifications are missing from all the previous
countermeasures in Shamir’s family.

Vigilant’s countermeasure Vigilant takes another approach. Rather than doing the integrity
verifications on “direct checksums” that are the representative values of the CRT-RSA computation
in the small subrings, Vigilant uses different values that he constructs for that purpose. The
clever idea of his countermeasure is to use sub-CRTs on the values that the CRT-RSA algorithm
manipulates in order to have in one part the value we are interested in and in the other the value
constructed for the verification (lines 8 and 17).

12

Algorithm 7: CRT-RSA with Aumüller et al.’s countermeasure6 [ABF+02]

Input : Message M , key (p, q, dp, dq, iq)
Output: Signature Md mod N , or error

1 Choose a small random integer r.

2 p′ = p · r
3 q′ = q · r
4 if p′ 6≡ 0 mod p or q′ 6≡ 0 mod q then return error

5 S′p = Mdp mod ϕ(p′) mod p′ // Intermediate signature in Zpr

6 S′q = Mdq mod ϕ(q′) mod q′ // Intermediate signature in Zqr

7 Sp = S′p mod p // Retrieve intermediate signature in Zp

8 Sq = S′q mod q // Retrieve intermediate signature in Zq

9 S = Sq + q · (iq · (Sp − Sq) mod p) // Recombination in ZN

10 if S 6≡ S′p mod p or S 6≡ S′q mod q then return error

11 Spr = S′p mod r // Checksum of Sp in Zr

12 Sqr = S′q mod r // Checksum of Sq in Zr

13 if Spr
dq mod ϕ(r) 6≡ Sqrdp mod ϕ(r) mod r then return error

14 return S

To do this, he transforms M into another value M ′ such that:

M ′ ≡

{
M mod N,

1 + r mod r2,

which implies that:

S′ = M ′d mod Nr2 ≡

{
Md mod N,

1 + dr mod r2.

The latter results are based on the binomial theorem, which states that (1 + r)d =
∑d

k=0

(
d
k

)
rk =

1 + dr +
(
d
2

)
r2 + . . . , which simplifies to 1 + dr in the Zr2 ring.

This property is used to verify the integrity of the intermediate CRT signatures on lines 11
and 20. It is also used on line 24 which tests the recombination using the same technique but with
random values inserted on lines 21 and 22 in place of the constructed ones. This test also verifies
the integrity of N .

Two additional tests are required by Vigilant’s arithmetic trick. The verifications at lines 10
and 19 ensure that the original message M has indeed been CRT-embedded in M ′p and M ′q.

4 The Essence of a Countermeasure

Our attempt to classify the existing countermeasures provided us with a deep understanding of
how they work. To ensure the integrity of the CRT-RSA computation, the algorithm must verify

6For the sake of simplicity we removed some code that served against SPA (simple power analysis) and only kept
the necessary code against fault-injection attacks.

13

Algorithm 8: CRT-RSA with Vigilant’s countermeasure6 [Vig08a]

with Coron et al.’s fixes [CGM+10] and Rauzy & Guilley’s simplifications [RG14b]

Input : Message M , key (p, q, dp, dq, iq)
Output: Signature Md mod N , or error

1 Choose small random integers r, R1, and R2.
2 N = p · q
3 p′ = p · r2
4 ipr = p−1 mod r2

5 Mp = M mod p′

6 Bp = p · ipr
7 Ap = 1−Bp mod p′

8 M ′p = Ap ·Mp +Bp · (1 + r) mod p′ // CRT insertion of verification value in M ′p

9 S′p = M ′p
dp mod ϕ(p′)

mod p′ // Intermediate signature in Zpr2

10 if M ′p 6≡M mod p then return error

11 if Bp · S′p 6≡ Bp · (1 + dp · r) mod p′ then return error

12 q′ = q · r2
13 iqr = q−1 mod r2

14 Mq = M mod q′

15 Bq = q · iqr
16 Aq = 1−Bq mod q′

17 M ′q = Aq ·Mq +Bq · (1 + r) mod q′ // CRT insertion of verification value in M ′q

18 S′q = M ′q
dq mod ϕ(q′)

mod q′ // Intermediate signature in Zqr2

19 if M ′q 6≡M mod q then return error

20 if Bq · S′q 6≡ Bq · (1 + dq · r) mod q′ then return error

21 Spr = S′p −Bp · (1 + dp · r −R1) // Verification value of S′p swapped with R1

22 Sqr = S′q −Bq · (1 + dq · r −R2) // Verification value of S′q swapped with R2

23 Sr = Sqr + q · (iq · (Spr − Sqr) mod p′) // Recombination in ZNr2

// Simultaneous verification of lines 2 and 23

24 if pq · (Sr −R2 − q · iq · (R1 −R2)) 6≡ 0 mod Nr2 then return error

25 return S = Sr mod N // Retrieve result in ZN

14

3 things: the integrity of the computation modulo p, the integrity of the computation modulo q,
and the integrity of the CRT recombination (which can be subject to transient fault attacks). This
fact has been known since the first attacks on Shamir’s countermeasure. Our study of the existing
countermeasures revealed that, as expected, those which perform these three integrity verifications
are the ones which actually work. This applies to Shamir’s family of countermeasures, but also
for Giraud’s family. Indeed, countermeasures in the latter also verify the two exponentiations and
the recombination by testing the consistency of the exponentiations indirectly on the recombined
value.

4.1 A Straightforward Countermeasure

The result of these observations is a very straightforward countermeasure, presented in Alg. 9. This
countermeasure works by testing the integrity of the signatures modulo p and q by replicating the
computations (lines 1 and 3) and comparing the results, and the integrity of the recombination
by verifying that the two parts of the CRT can be retrieved from the final result (line 5). This
countermeasure is of course very expensive since the two big exponentiations are done twice, and is
thus not usable in practice. Note that it is nonetheless still better in terms of speed than computing
RSA without the CRT optimization.

Algorithm 9: CRT-RSA with straightforward countermeasure

Input : Message M , key (p, q, dp, dq, iq)
Output: Signature Md mod N , or error

1 Sp = Mdp mod ϕ(p) mod p // Intermediate signature in Zp

2 if Sp 6≡Mdp mod p then return error

3 Sq = Mdq mod ϕ(q) mod q // Intermediate signature in Zq

4 if Sq 6≡Mdq mod q then return error

5 S = Sq + q · (iq · (Sp − Sq) mod p) // Recombination in ZN

6 if S 6≡ Sp mod p or S 6≡ Sq mod q then return error

7 return S

Proposition 3 (Correctness). The straightforward countermeasure (and thus all the ones which
do equivalent verifications) is secure against first-order fault attacks as per Def. 1 and 2.

Proof. The proof is in two steps. First, prove that if the intermediate signatures are not correct,
then the tests at lines 2 and 4 returns error. Second, prove that if both tests passed then either the
recombination is correct or the test at line 6 returns error.

If a fault occurs during the computation of Sp (line 1), then it either has the effect of zeroing
its value or randomizing it, as shown by Lem. 1. Thus, the test of line 2 detects it since the two
compared values won’t be equal. If the fault happens on line 2, then either we are in a symmetrical
case: the repeated computation is faulted, or the test is skipped: in that case there are no faults
affecting the data so the test is unnecessary anyway. It works similarly for the intermediate signature
in Zq.

If the first two tests pass, then the tests at line 6 verify that both parts of the CRT computation
are indeed correctly recombined in S. If a fault occurs during the recombination on line 5 it will

15

thus be detected. If the fault happens at line 6, then either it is a fault on the data and one of the
two tests returns error, or it is a skipping fault which bypasses one or both tests but in that case
there are no faults affecting the data so the tests are unnecessary anyway.

4.2 High-Order Countermeasures

Using the finja3 tool we were able to verify that removing one of the three integrity checks indeed
breaks the countermeasure against first-order attacks. Nonetheless, each countermeasure which has
these three integrity checks, plus those that may be necessary to protect optimizations on them,
offers the same level of protection.

Proposition 4 (High-order countermeasures). Against randomizing faults, all correct countermea-
sures (as per Prop. 3) are high-order. However, there are no generic high-order countermeasures
if the three types of faults in our attack model are taken into account, but it is possible to build
nth-order countermeasures for any n.

Proof. Indeed, if a countermeasure is able to detect a single randomizing fault, then adding more
faults will not break the countermeasure, since a random fault cannot induce a verification skip.
Thus, all working countermeasures are high-order against randomizing faults.

However, if after one or more faults which permit an attack, there is a skipping fault or a
zeroing fault which leads to skip the verification which would detect the previous fault injections,
then the attack will work. As Lem. 1 and Prop. 2 explain, this is true for all countermeasures, not
only those which are test-based but also the infective ones. It seems that the only way to protect
against that is to replicate of the integrity checks. If each invariant is verified n times, then the
countermeasure will resist at least n faults in the worst case scenario: a single fault is used to break
the computation and the n others to avoid the verifications which detect the effect of the first fault.
Thus, there are no generic high-order countermeasures if the three types of faults in our attack
model are taken into account, but it is possible to build a nth-order countermeasure for
any n by replicating the invariant verifications n times.

Existing first-order countermeasures such as the ones of Aumüller et al. (Alg. 7, 13), Vigi-
lant (Alg. 8, 11), or Ciet & Joye (Alg. 4) can thus be transformed into nth-order countermeasures,
in the attack model described in Def. 1 and 2. As explained, the transformation consists in repli-
cating the verifications n times, whether they are test-based or infective.

This result means that it is very important that the verifications be cost effective. Fortunately,
as we saw in Sec. 3 and particularly in Sec. 3.4 on the usage of the small rings, the existing
countermeasures offer exactly that: optimized versions of Alg. 9 that use a variety of invariant
properties to avoid replicating the two big exponentiations of the CRT computation.

5 Building Better or Different Countermeasures

In the two previous sections we learned a lot about current countermeasures and how they work.
We saw that to reduce their cost, most countermeasures use invariant properties to optimize the
verification speed by using checksums on smaller numbers than the big ones which are manipulated
by the protected algorithm. Doing so, we understood how these optimizations work and the power
of their underlying ideas. In this section apply our newly acquired knowledge on the essence of

16

countermeasures in order to build the quintessence of countermeasures. Namely, we leverage our
findings to fix Shamir’s countermeasure, and to drastically simplify the one of Vigilant, while at
the same time transforming it to be infective instead of test-based.

5.1 Correcting Shamir’s Countermeasure

We saw that Shamir’s countermeasure is broken in multiple ways, which has been known for a long
time now. To fix it without denaturing it, we need to verify the integrity of the recombination as
well as the ones of the overrings moduli. We can directly take these verifications from Aumüller et
al.’s countermeasure. The result can be observed in Alg. 10.

Algorithm 10: CRT-RSA with a fixed version of Shamir’s countermeasure

(new algorithm contributed in this paper)

Input : Message M , key (p, q, d, iq)
Output: Signature Md mod N , or error

1 Choose a small random integer r.

2 p′ = p · r
3 q′ = q · r
4 if p′ 6≡ 0 mod p or q′ 6≡ 0 mod q then return error

5 S′p = Md mod ϕ(p′) mod p′ // Intermediate signature in Zpr

6 S′q = Md mod ϕ(q′) mod q′ // Intermediate signature in Zqr

7 if S′p 6≡ S′q mod r then return error

8 Sp = S′p mod p // Retrieve intermediate signature in Zp

9 Sq = S′q mod q // Retrieve intermediate signature in Zq

10 S = Sq + q · (iq · (Sp − Sq) mod p) // Recombination in ZN

11 if S 6≡ S′p mod p or S 6≡ S′q mod q then return error

12 return S

The additional tests on line 4 protect against transient faults on p (resp. q) while computing
p′ (resp. q′), which would amount to a randomization of S′p (resp. S′q) while computing the
intermediate signatures. The additional test on line 7 verifies the integrity of the intermediate
signature computations.

5.2 Simplifying Vigilant’s Countermeasure

The mathematical tricks used in the Vigilant countermeasure are very powerful. Their understand-
ing enabled the optimization of his countermeasure to only need 3 verifications, while the original
version has 9. Our simplified version of the countermeasure can be seen in Alg. 11. Our idea is that
it is not necessary to perform the checksum value replacements at lines 21 and 22 of Alg. 8 (see
Sec. 3.4). What is more, if these replacements are not done, then the algorithm’s computations
carry the CRT-embedded checksum values until the end, and the integrity of the whole computation
can be tested with a single verification in Zr2 (line 23 of Alg. 11).

This idea not only reduces the number of required verifications, which is in itself a security
improvement as shown in Sec. 3.2, but it also optimizes the countermeasure for speed and reduces

17

its need for randomness (the computations of lines 21 and 22 of Alg. 8 are removed).
The two other tests that are left are the ones of lines 10 and 19 in Alg. 8, which ensure that the

original message M has indeed been CRT-embedded in M ′p and M ′q. We take advantage of these
two tests to verify the integrity of N both modulo p and modulo q (lines 17 and 20 of Alg. 11).

Remark 3. Note that we also made this version of the countermeasure infective, using the trans-
formation method that we exposed in Sec. 3.2. As we said, any countermeasure can be transformed
this way, for instance Alg. 13 in the Appendix B presents an infective variant of Aumüller et al.’s
countermeasure.

Algorithm 11: CRT-RSA with our simplified Vigilant’s countermeasure, under its infective avatar

(new algorithm contributed in this paper)

Input : Message M , key (p, q, dp, dq, iq)
Output: Signature Md mod N , or a random value in ZN

1 Choose a small random integer r.
2 N = p · q
3 p′ = p · r2
4 ipr = p−1 mod r2

5 Mp = M mod p′

6 Bp = p · ipr
7 Ap = 1−Bp mod p′

8 M ′p = Ap ·Mp +Bp · (1 + r) mod p′ // CRT insertion of verification value in M ′p

9 q′ = q · r2
10 iqr = q−1 mod r2

11 Mq = M mod q′

12 Bq = q · iqr
13 Aq = 1−Bq mod q′

14 M ′q = Aq ·Mq +Bq · (1 + r) mod q′ // CRT insertion of verification value in M ′q

15 S′p = M ′p
dp mod ϕ(p′)

mod p′ // Intermediate signature in Zpr2

16 Spr = 1 + dp · r // Checksum in Zr2 for S′p

17 cp = M ′p +N −M + 1 mod p

18 S′q = M ′q
dq mod ϕ(q′)

mod q′ // Intermediate signature in Zqr2

19 Sqr = 1 + dq · r // Checksum in Zr2 for S′q

20 cq = M ′q +N −M + 1 mod q

21 S′ = S′q + q · (iq · (S′p − S′q) mod p′) // Recombination in ZNr2

22 Sr = Sqr + q · (iq · (Spr − Sqr) mod p′) // Recombination checksum in Zr2

23 cS = S′ − Sr + 1 mod r2

24 return S = S′cpcqcS mod N // Retrieve result in ZN

6 Discussion: Limitations of our Formalism

Some CRT-RSA implementations that are proved secure in this article have been subject to pub-
lished attacks. Such attacks actually exploit artifacts not captured by our modelization.

18

We mention below two of them, which are quite insightful about the difficulty to formally
capture a security notion:
• one where the inputs are correlated (Vigilant, in [Vig08b, Slides 13–14]), which allows to

make the redundant verifications ineffective;
• one where the effect of the fault is considered small enough to enumerate all of them, coupled

with an inversion of an infective protection.
Of course, it is difficult to resist an omnipotent attacker. Despite our proof framework’s ability

to adapt to different attacks (by using different attack success condition), it still only captures the
fault model we described in Def. 1 and 2, which may not always match reality. We nevertheless
notice that the use of formal methods helps guarantee a baseline security level.

6.1 Correlated Inputs

We suppose that the inputs can be chosen by the attacker7 and that the redundancy parameter r
is known8. In this case, Vigilant has shown in his slides at CHES ’08 that the countermeasure of
Aumüller et al. [ABF+02] can be defeated as if unprotected by using for input m a multiple of r.
Indeed, all the computations happening in the overrings Zpr or Zqr are then equal to zero modulo
r, and thus alterations of the control flow graph remain undetected.

6.2 Low Entropy Infection

In [Wag04], Wagner attacks an infective protection, namely that called BOS [BOS03]. By assuming
that the error is not uniformly distributed, but rather of low Hamming weight, he shows how to
exploit the infected output by an exhaustive enumeration of plausible faults. Clearly, this is a
drawback of infective protections. We can ignore it provided two hypotheses are formulated:

1. we assume that the mixing between the result and the fault-dependent quantity (denoted
checks ci, e.g., in Alg. 5) is one-way, i.e., the non-infected value cannot be recovered from the
infected value and exhaustive guesses on the ci, and/or

2. we assume that the attacker cannot accurately choose his fault model.

7 Conclusions and Perspectives

We studied the existing CRT-RSA algorithm countermeasures against fault-injection attacks, in
particular the ones of Shamir’s family. In so doing, we got a deeper understanding of their ins
and outs. We obtained a few intermediate results: the absence of conceptual distinction between
test-based and infective countermeasures, the fact that faults on the code (skipping instructions)
can be captured by considering only faults on the data, and the fact that the many countermeasures
that we studied (and their variations) were actually applying a common protection strategy but
optimized it in different ways. These intermediate results allowed us to describe the design of a
high-order countermeasure against our very generic fault model (comprised of randomizing, zeroing,
and skipping faults). Our design allows to build a countermeasure resisting n faults for any n at
a very reduced cost (it consists in adding n − 1 comparisons on small numbers). We were also
able to fix Shamir’s countermeasure, and to drastically improve the one of Vigilant, going from 9

7Chosen plaintext is an example of threat that is not captured by our model.
8In practice, r can be chosen randomly for each execution, thus mitigating this attack.

19

verifications in the original countermeasure to only 3, removing computations made useless, and
reducing its need for randomness, while at the same time making it infective instead of test-based.

Except for those which rely on the fact that the protected algorithm takes the form of a CRT
computation, the ideas presented in the various countermeasures can be applied to any modular
arithmetic computation. For instance, it could be done using the idea of Vigilant consisting in using
the CRT to embed a known subring value in the manipulated numbers to serve as a checksum.
That would be the most obvious perspective for future work, as it would allow a generic approach
against fault attacks and even automatic insertion of the countermeasure.

A study of Giraud’s family of countermeasures in more detail would be beneficial to the com-
munity as well.

Acknowledgment

We would like to thank Antoine Amarilli for his proofreading which greatly improved the editorial
quality of our manuscript.

References

[ABF+02] Christian Aumüller, Peter Bier, Wieland Fischer, Peter Hofreiter, and Jean-Pierre Seifert. Fault Attacks
on RSA with CRT: Concrete Results and Practical Countermeasures. In Burton S. Kaliski, Jr., Çetin Kaya
Koç, and Christof Paar, editors, CHES, volume 2523 of Lecture Notes in Computer Science, pages 260–
275. Springer, 2002.

[BDF+14] Gilles Barthe, François Dupressoir, Pierre-Alain Fouque, Benjamin Grégoire, Mehdi Tibouchi, and Jean-
Christophe Zapalowicz. Making RSA-PSS Provably Secure Against Non-Random Faults. IACR Cryptol-
ogy ePrint Archive, 2014:252, 2014.

[BDL97] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the Importance of Checking Cryptographic
Protocols for Faults. In Proceedings of Eurocrypt’97, volume 1233 of LNCS, pages 37–51. Springer, May
11-15 1997. Konstanz, Germany. DOI: 10.1007/3-540-69053-0 4.

[BNP07] Arnaud Boscher, Robert Naciri, and Emmanuel Prouff. CRT RSA Algorithm Protected Against Fault
Attacks. In Damien Sauveron, Constantinos Markantonakis, Angelos Bilas, and Jean-Jacques Quisquater,
editors, WISTP, volume 4462 of Lecture Notes in Computer Science, pages 229–243. Springer, 2007.

[BOS03] Johannes Blömer, Martin Otto, and Jean-Pierre Seifert. A new CRT-RSA algorithm secure against
bellcore attacks. In Sushil Jajodia, Vijayalakshmi Atluri, and Trent Jaeger, editors, ACM Conference on
Computer and Communications Security, pages 311–320. ACM, 2003.

[CCGV13] Maria Christofi, Boutheina Chetali, Louis Goubin, and David Vigilant. Formal verification of a CRT-RSA
implementation against fault attacks. Journal of Cryptographic Engineering, 3(3):157–167, 2013.

[CGM+10] Jean-Sébastien Coron, Christophe Giraud, Nicolas Morin, Gilles Piret, and David Vigilant. Fault Attacks
and Countermeasures on Vigilant’s RSA-CRT Algorithm. In Luca Breveglieri, Marc Joye, Israel Koren,
David Naccache, and Ingrid Verbauwhede, editors, FDTC, pages 89–96. IEEE Computer Society, 2010.

[CJ05] Mathieu Ciet and Marc Joye. Practical fault countermeasures for chinese remaindering based RSA. In
Fault Diagnosis and Tolerance in Cryptography, 2005.

[CM09] Jean-Sébastien Coron and Avradip Mandal. PSS Is Secure against Random Fault Attacks. In ASI-
ACRYPT, volume 5912 of LNCS, pages 653–666. Springer, December 6-10 2009. Tōkyō, Japan.

[DGRS09] Emmanuelle Dottax, Christophe Giraud, Matthieu Rivain, and Yannick Sierra. On Second-Order Fault
Analysis Resistance for CRT-RSA Implementations. In Olivier Markowitch, Angelos Bilas, Jaap-Henk
Hoepman, Chris J. Mitchell, and Jean-Jacques Quisquater, editors, WISTP, volume 5746 of Lecture Notes
in Computer Science, pages 68–83. Springer, 2009.

[Gar65] Harvey L. Garner. Number Systems and Arithmetic. Advances in Computers, 6:131–194, 1965.

20

[Gir06] Christophe Giraud. An RSA Implementation Resistant to Fault Attacks and to Simple Power Analysis.
IEEE Trans. Computers, 55(9):1116–1120, 2006.

[JPY01] Marc Joye, Pascal Paillier, and Sung-Ming Yen. Secure evaluation of modular functions, 2001.

[JT11] Marc Joye and Michael Tunstall. Fault Analysis in Cryptography. Springer LNCS, March 2011. http:

//joye.site88.net/FAbook.html. DOI: 10.1007/978-3-642-29656-7 ; ISBN 978-3-642-29655-0.

[KKHH11] Sung-Kyoung Kim, Tae Hyun Kim, Dong-Guk Han, and Seokhie Hong. An efficient CRT-RSA algorithm
secure against power and fault attacks. J. Syst. Softw., 84:1660–1669, October 2011.

[Koç94] Çetin Kaya Koç. High-Speed RSA Implementation, November 1994. Version 2, ftp://ftp.rsasecurity.
com/pub/pdfs/tr201.pdf.

[LKW06] Sining Liu, Brian King, and Wei Wang. A CRT-RSA algorithm secure against hardware fault attacks.
In Second International Symposium on Dependable Autonomic and Secure Computing (DASC 2006), 29
September - 1 October 2006, Indianapolis, Indiana, USA, pages 51–60. IEEE Computer Society, 2006.

[LRT14] Duc-Phong Le, Matthieu Rivain, and Chik How Tan. On double exponentiation for securing RSA against
fault analysis. In Josh Benaloh, editor, CT-RSA, volume 8366 of Lecture Notes in Computer Science,
pages 152–168. Springer, 2014.

[RG14a] Pablo Rauzy and Sylvain Guilley. A formal proof of countermeasures against fault injection attacks on
CRT-RSA. Journal of Cryptographic Engineering, 4(3):173–185, 2014.

[RG14b] Pablo Rauzy and Sylvain Guilley. Formal Analysis of CRT-RSA Vigilant’s Countermeasure Against
the BellCoRe Attack. In 3rd ACM SIGPLAN Program Protection and Reverse Engineering Workshop
(PPREW 2014), January 25 2014. San Diego, CA, USA. ISBN: 978-1-4503-2649-0.

[Riv09] Matthieu Rivain. Securing RSA against Fault Analysis by Double Addition Chain Exponentiation. Cryp-
tology ePrint Archive, Report 2009/165, 2009. http://eprint.iacr.org/2009/165/.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems. Communications of the ACM, 21(2):120–126, 1978.

[Sha99] Adi Shamir. Method and apparatus for protecting public key schemes from timing and fault attacks,
November 1999. Patent Number 5,991,415; also presented at the rump session of EUROCRYPT ’97.

[TW12] Mohammad Tehranipoor and Cliff Wang, editors. Introduction to Hardware Security and Trust. Springer,
2012. ISBN 978-1-4419-8079-3.

[Vig08a] David Vigilant. RSA with CRT: A New Cost-Effective Solution to Thwart Fault Attacks. In Elisabeth
Oswald and Pankaj Rohatgi, editors, CHES, volume 5154 of Lecture Notes in Computer Science, pages
130–145. Springer, 2008.

[Vig08b] David Vigilant. RSA with CRT: A New Cost-Effective Solution to Thwart Fault Attacks. In CHES, 2008.
Slides presented at CHES [Vig08a] (personal communication).

[Wag04] David Wagner. Cryptanalysis of a provably secure CRT-RSA algorithm. In Vijayalakshmi Atluri, Birgit
Pfitzmann, and Patrick Drew McDaniel, editors, ACM Conference on Computer and Communications
Security, pages 92–97. ACM, 2004.

[YJ00] Sung-Ming Yen and Marc Joye. Checking Before Output May Not Be Enough Against Fault-Based
Cryptanalysis. IEEE Trans. Computers, 49(9):967–970, 2000. DOI: 10.1109/12.869328.

21

http://joye.site88.net/FAbook.html
http://joye.site88.net/FAbook.html
ftp://ftp.rsasecurity.com/pub/pdfs/tr201.pdf
ftp://ftp.rsasecurity.com/pub/pdfs/tr201.pdf
http://eprint.iacr.org/2009/165/

A Recovering d and e from (p, q, dp, dq, iq)

We prove here the following proposition:

Proposition 5. It is possible to recover the private exponent d and the public exponent e from the
5-tuple (p, q, dp, dq, iq) described in Sec. 2.2.

Proof. Clearly, p− 1 and q − 1 are neither prime, nor coprimes (they have at least 2 as a common
factor). Thus, proving Prop. 5 is not a trivial application of the Chinese Remainder Theorem. The
proof we provide is elementary, but to our best knowledge, it has never been published before.

The numbers p1 = p−1
gcd(p−1,q−1) and q1 = q−1

gcd(p−1,q−1) are coprime, but there product is not equal

to λ(N). There is a factor gcd(p− 1, q − 1) missing, since λ(N) = p1 · q1 · gcd(p− 1, q − 1).
Now, gcd(p − 1, q − 1) is expected to be small. Thus, the following Alg. 12 can be applied

efficiently. In this algorithm, the invariant is that p2 and q2, initially equal to p1 and p2, remain
coprime. Moreover, they keep on increasing whereas r2, initialized to r1 = gcd(p− 1, q − 1), keeps
on decreasing till 1.

Algorithm 12: Factorization of λ(N) into two coprimes, multiples of p1 and q1 respectively.

Input : p1 = p−1
gcd(p−1,q−1) , q1 = q−1

gcd(p−1,q−1) and r1 = gcd(p− 1, q − 1)

Output: (p2, q2), coprime, such as p2 · q2 = λ(N)

1 (p2, q2, r2)← (p1, q1, r1)

2 g ← gcd(p2, r2)
3 while g 6= 1 do
4 p2 ← p2 · g
5 r2 ← r2/g
6 g ← gcd(p2, r2)

7 end

8 g ← gcd(q2, r2)
9 while g 6= 1 do

10 q2 ← q2 · g
11 r2 ← r2/g
12 g ← gcd(q2, r2)

13 end
// p2, q2 and r2 are now coprime

14 q2 ← q2 · r2 // p2 ← p2 · r2 would work equally

15 (r2 ← r2/r2 = 1) // For more pedagogy

16 return (p2, q2)

Let us denote p2 and q2 the two outputs of Alg. 12, we have:
• dp2 = dp mod p2, since p2|(p− 1);
• dq2 = dq mod q2, since q2|(q − 1);
• i12 = p2

−1 mod q2, since p2 and q2 are coprime.
We can apply Garner’s formula to recover d:

d = dp2 + p2 · ((i12 · (dq2 − dp2)) mod q2) . (1)

By Garner, we know that 0 ≤ d < p2 · q2 = λ(N), which is consistent with the remark made in the
last sentence of Sec. 2.1.

22

Once we know the private exponent d, the public exponent e can be computed as the inverse
of d modulo λ(N).

B Infective Aumüller CRT-RSA

The infective variant of Aumüller protection against CRT-RSA is detailed in Alg. 13.

Algorithm 13: CRT-RSA with Aumüller et al.’s countermeasure6, under its infective avatar

(new algorithm contributed in this paper)

Input : Message M , key (p, q, dp, dq, iq)
Output: Signature Md mod N , or a random value

1 Choose a small random integer r.

2 p′ = p · r
3 c1 = p′ + 1 mod p

4 q′ = q · r
5 c2 = q′ + 1 mod q

6 S′p = Mdp mod ϕ(p′) mod p′ // Intermediate signature in Zpr

7 S′q = Mdq mod ϕ(q′) mod q′ // Intermediate signature in Zqr

8 Sp = S′p mod p // Retrieve intermediate signature in Zp

9 Sq = S′q mod q // Retrieve intermediate signature in Zq

10 S = Sq + q · (iq · (Sp − Sq) mod p) // Recombination in ZN

11 c3 = S − S′p + 1 mod p

12 c4 = S − S′q + 1 mod q

13 Spr = S′p mod r // Checksum of Sp in Zr

14 Sqr = S′q mod r // Checksum of Sq in Zr

15 c5 = Spr
dq mod ϕ(r) − Sqrdp mod ϕ(r) + 1 mod r

16 return Sc1c2c3c4c5

23

Using Modular Extension to Provably Protect
ECC Against Fault Attacks

Pablo Rauzy2,1, Martin Moreau1, Sylvain Guilley1, and Zakaria Najm1

1 Telecom ParisTech ; Institut Mines-Telecom ; CNRS LTCI
firstname.lastname@telecom-paristech.fr
2 Inria — firstname.lastname@inria.fr

Abstract. Fault injection attacks are a real-world threat to cryptosys-
tems, in particular asymmetric cryptography. In this paper, we focus on
countermeasures which guarantee the integrity of the computation re-
sult, hence covering most existing and future faults attacks. Namely, we
study the modular extension protection scheme in previously existing and
newly contributed variants of the countermeasure on elliptic curve scalar
multiplication (ECSM) algorithms. We find that an existing countermea-
sure is incorrect and we propose new “test-free” variant of the modular
extension scheme that fixes it. We then formally prove the correctness
and security of modular extension: specifically, the fault non-detection
probability is inversely proportional to the security parameter. Finally,
we implement an ECSM protected with test-free modular extension on an
ARM Cortex-M4 microcontroller. A systematic fault injection campaign
for several values of the security parameter confirms our theoretical pre-
diction about the security of the obtained implementation, and provides
figures for practical performance.

Keywords: fault injection attack, countermeasure, asymmetric cryp-
tography, elliptic curve cryptography, modular extension.

1 Introduction

Properly used cryptography is a key building block for secure information ex-
change. Thus, implementation-level hacks must be considered seriously in addi-
tion to the threat of cyber-attacks. In particular, fault injection attacks target
physical implementations of secured devices in order to induce exploitable errors.

Formal methods. In cryptology, formal methods aim at providing a mathemat-
ical / mechanical proof of security, which helps in building trust into proved
cryptosystems. However, their use is still limited in the field of fault injection
and side channel attacks as formal methods rely on models, and implementations
are difficult to model properly.

Asymmetric cryptography. Asymmetric cryptography addresses different needs
such as key exchange and digital signature. RSA, Diffie-Hellman, and ElGamal
have been used for decades, and elliptic curve cryptography (ECC) algorithms

such as ECDSA [22] are more and more deployed. ECC pairing-based cryptogra-
phy has recently been accelerated in practice and is thus becoming practical [37].
For example, the construction of “pairing-friendly” elliptic curves is an active
subject [20]. Homomorphic encryption schemes are getting more practical and
are progressively considered viable solutions for some real-world applications re-
quiring strong privacy. All these algorithms use large numbers and take place
in mathematical structures such as finite rings and fields. This property enables
the use of formal methods but also facilitates attacks.

Fault Attacks. As put forward in the reference book on fault analysis in cryp-
tography [25, Chp. 9], there are three main categories of fault attacks.
1) Safe-error attacks consist in testing whether an intermediate variable is dum-
my (usually introduced against simple power analysis [30]) or not, by faulting it
and looking whether there is an effect on the final result.
2) Cryptosystem parameter alterations with the goal of weakening the algorithm
in order to facilitate key extraction. For example in ECC, invalid-curve fault
attacks consist in moving the computation to a weaker curve, enabling the at-
tacker to use cryptanalysis attacks exploiting the faulty outputs.
3) Finally, the most serious attacks belong to the differential fault analysis (DFA)
category. Often the attack path consists in comparing correct and faulted out-
puts, like in the well-known BellCoRe attack on CRT-RSA (RSA speeded up
using the Chinese Remainder Theorem), or the sign-change fault attack on ECC.

The BellCoRe attack [9] on CRT-RSA introduced the concept of fault injec-
tion attacks. It is very powerful: faulting the computation even in a very random
way yields almost certainly an exploitable result allowing to recover the secret
primes of the RSA modulus N = pq. This attack is recalled in Sec. A for the
sake of completeness.

The sign-change attack [8] on ECC consists in changing the sign of an inter-
mediate elliptic curve point in the midst of an elliptic curve scalar multiplica-
tion (ECSM). The resulting faulted point is still on the curve so the fault is not
detected by traditional point validation countermeasures. Such a fault can be
achieved by for instance changing the sign in the double operation of the ECSM
algorithm (line 3 of Alg. 1). If the fault injection occurs during the last iteration

of the loop, then the final result Q̂ = [−2
∑n−1

i=1 ki2
i−1]P + k0P = −Q + 2k0P ,

i.e., either Q̂ = −Q or Q̂ = −Q + 2P depending on k0, which reveals the value
of k0 to the attacker. This process can be iterated to find the other bits of the
scalar, and optimizations exist that trade-off between the number of necessary
faulted results and the required exhaustive search.

Both RSA and ECC algorithms continue to be the target of many new fault
injection attacks: see [3,31,5,6,15] just for some 2014 papers. Besides, this topic
is emerging and other new fault attacks will appear sooner or later. Hence, the
need for efficient and practical generic countermeasures against fault attacks is
obvious. David Wagner from UC Berkeley concurs in [43]: “It is a fascinating
research problem to establish a principled foundation for security against fault
attacks and to find schemes that can be proven secure within that framework.”

2

Input : P ∈ E, k =
∑n−1

i=0 ki2
i (n is the scalar size in bits, where ki ∈ {0, 1})

Output : [k]P

1 Q← O
2 for i← n− 1 down to 0 do
3 Q← 2Q . ECDBL

4 if ki = 1 then Q← Q + P . ECADD

5 return Q

Algorithm 1: Double-and-add left-to-right scalar multiplication on elliptic

curve E.

Countermeasures. Verifications compatible with mathematical structures can be
applied either at computational or at algorithmic level.

Algorithmic protections have been proposed by Giraud [18] (and many oth-
ers [10,32,28]) for CRT-RSA, which naturally transpose to ECC, as shown in [27].
These protections are implementation specific (e.g., depend on the chosen expo-
nentiation algorithm) and are thus difficult to automate, requiring specialized
engineering skills.

Fr

Fr

= error

output Fp

false

tr
ue

Fp

Zpr

Fp

Fig. 1: Sketch of the principle of
modular extension.

Computational protections have been
pioneered by Shamir in [39] using modular
extension, initially to protect CRT-RSA.
The idea is to carry out the same compu-
tation in two different algebraic structures
allowing to check the computation before
disclosing its result. For example protect-
ing a computation in Fp consists in carry-
ing out the same computation in Zpr and
Fr (Zpr is the direct product of Fp and Fr), where r is a small number (r � p);
the computation in Zpr must match that of Fr when reduced modulo r, if not an
error is returned, otherwise the result in Zpr is reduced modulo p and returned.
The principle of modular extension is sketched in Fig. 1. This method operates
at low level (integer arithmetic), thereby enabling countermeasures (and opti-
mizations) to be added on top of it. They are thus easily maintained, which
explains why this method is quite popular. Indeed, there is a wealth of variants
for CRT-RSA stemming from this idea [1,42,24,7,11,13], as well as a few proofs-
of-concept transposing it to ECC [8,2,23]. Despite the nonexistence of literature,
the same idea could apply to post-quantum code-based cryptography, pairing,
and homomorphic computation for instance. Therefore, our paper focuses on
computational countermeasures.

On the one hand, the variety of CRT-RSA countermeasures shows that fault
attacks are a threat that is taken seriously by both the academic and the in-
dustrial communities. On the other hand, it bears witness to the artisanal way
these countermeasures were put together. Indeed, the absence of formal secu-
rity claims and of proofs added to the necessity of writing implementations by
hand results in many weaknesses in existing countermeasures and thus in many
attempts to create better ones.

3

Contributions. We study the modular extension protection scheme in exist-
ing countermeasures on elliptic curve scalar multiplication (ECSM) algorithms,
namely BOS [8] and BV [2].

We show that BOS is incorrect (Sec. 3.1), i.e., that in some specific cases
that we strictly characterize, it does not return the expected result (even in the
absence of fault injections), which may induce a security issue. The flaw in BOS
is reminiscent to that provoked artificially by means of injecting points with low
order neighbours and bitflip faults in [16].

We show that BV is correct (Sec. 3.2), but that it is weaker and more vul-
nerable to fault injections, i.e., that in some specific cases that we strictly char-
acterize, faults are not detected. As it happens, these specific cases are exactly
the same as the ones where BOS returns an incorrect result.

We introduce the notion of test-free algorithms (Sec. 4) as a solution to BOS
incorrectness, and then use it to propose a test-free variant of BOS (TF-BOS).
We prove that TF-BOS is correct.

We then formally study the security of the test-free variant of modular ex-
tension (Sec. 5) and show that the fault non-detection probability is inversely
proportional to the security parameter.

Finally, we implement TF-BOS on an ARM Cortex-M4 microcontroller and
perform a systematic fault injection campaign for several values of the secu-
rity parameter (Sec. 6), which confirms the security of the countermeasure, and
provides figures for its practical performance.

2 ECSM on the Projective Plane

Definition 1 (Elliptic curve over a finite field). An elliptic curve is a plane
curve over a finite field Fp, which is denoted E(Fp) (or simply E when the
base field is implicit). It is composed of a specified point, called “point at in-
finity” and denoted by O, and of the points (x, y) satisfying an equation of the
form y2 = x3 + ax+ b (known as Weierstrass equation), where the discriminant
∆ = −16(4a3 + 27b2) is nonzero. Alongside with elliptic curve group operations,
this set of points form an additive group, where O is the identity element.

The points of the curve can be represented in a coordinate system over Fp, the
most natural representation being affine. However, in such system, operations
on the curves are complicated due to divisions. Thus, we focus on a kind of
representation known as projective1, where a third coordinate Z is added, so
as to avoid divisions. The equation of the curve thus becomes: Y 2Z = X3 +
aXZ2 + bZ3, where X = xZ and Y = yZ. By convention, O is represented by
(X : Y : 0) in the projective plane. Remark that the Z coordinate is redundant:
we can get rid of it by a so-called projective-to-affine transformation, which maps
(X : Y : Z) to (x = X/Z, y = Y/Z).

1 Other projective coordinate systems exist, such as that of Jacobi, but for the sake
of simplicity and without loss of generality, we focus on the projective system.

4

Definition 2 (Curve order). The order #E of an elliptic curve E is the
number of points on the curve.

Definition 3 (Point order). The order ord(P) of a point P on a elliptic curve
E is the smallest non-null integer k such that [k]P = O. The maximum value of
ord(P) is #E.

Definition 4 (Generator). Let P ∈ E. The point P is called a generator of
E if E = {[k]P, 0 ≤ k < #E}, or equivalently if ord(P) = #E.

Remark 1. The coordinates (X : Y : Z) normally belong to a finite field Fp, but
for the purpose of the modular extension countermeasure, we extend the notion
of elliptic curve to rings (such as Zpr). For this reason we use the metavariable
n (and Zn) in some algorithms to represent an integer rather than p or r (and
Fp or Fr) which we use to represent prime numbers.

Computer algebra tools (e.g., MAGMA or SAGE) refuse to handle elliptic
curves on Fn when n is composite. However, in projective coordinates, com-
putations do not involve divisions, hence ECSM can be computed. Projective
versions of point doubling, point addition, and scalar multiplication are detailed
in Sec. B.1.

3 State-of-the-Art on ECSM Protection Against Fault
Attacks with Modular Extension

Definition 5 (Correct algorithm). An algorithm is said correct if it returns
the right result when no faults have been injected.

3.1 BOS

In [8], Blömer, Otto, and Seifert propose a countermeasure based on the modular
extension idea of Shamir for CRT-RSA [39]. It is presented in Alg. 2.

Input : P ∈ E(Fp), k ∈ {1, . . . , ord(P)− 1}
Output : Q = [k]P ∈ E(Fp)

1 Choose a small prime r, a curve E(Fr), and a point Pr on that curve.
2 Determine the combined curve E(Zpr) and point Ppr using the CRT.2

3 (Xpr : Ypr : Zpr) = ECSM(Ppr, k, pr)
4 (Xr : Yr : Zr) = ECSM(Pr, k, r)

5 if (Xpr mod r : Ypr mod r : Zpr mod r) = (Xr : Yr : Zr) then
6 return (Xpr mod p : Ypr mod p : Zpr mod p)
7 else
8 return error

Algorithm 2: ECSM protected with BOS countermeasure BOS(P, k, p).

2 See Sec. D.1.

5

An issue with BOS, which is not visible here as we purposedly presented
a division-free version of the ECSM algorithm, is that their paper does not
address the problem of divisions in Zpr. We will show that it is actually possible
to circumvent this problem if necessary in Sec. 5.1. However, there is also a
correction and security issue with BOS.

Proposition 1. BOS is incorrect.

Proof. There are tests in the ECDBL (Alg. 6) and ECADD (Alg. 7) algorithms
called from the ECSM algorithm (Alg. 8). The latter is called twice by BOS:
once to compute the ECSM on the combined curve (line 3 of Alg. 2), and once
to compute the ECSM on the small curve (line 4 of Alg. 2). The conditions of
the tests in ECDBL and ECADD depend on the inputs (point and scalar) of
the ECSM, and thus are not satisfied at the same time in the small and in the
combined computations. Indeed, the order of the point Pr on the small curve
is much smaller than k, so the small computation may come across O and may
satisfy some of the tests, while this is not going to happen on the combined
curve even if taken modulo r it should. As a result, the operations carried out
in E(Zpr) are not the same as in E(Fr), thus the comparison on line 5 of Alg. 2
may fail. In such cases, BOS will return error while the result in E(Fp) is actually
good. ut

This behavior can be a serious security issue as it reveals information about
the inputs. We will see in Sec. 4 that the leaked information can be very precise
about the scalar. A numerical example where BOS outputs an incorrect result
is given in Sec. D.2.

In 2010 Joye patented [23] essentially the same countermeasure except it uses
Fr2 and Zpr2 instead of Fr and Zpr, which does not address the raised issues.

3.2 BV

In [2], Baek and Vasyltsov propose a countermeasure based on modular extension
and point verification. The problem of divisions is explicitly evaded by carrying
out computations in Jacobian coordinates. For the sake of simplicity, we use the
BV protection scheme with projective coordinates. It is presented in Alg. 3.

The particularity of BV is that instead of computing a sibling ECSM on a
smaller curve E(Fr) to compare with its redundant counterpart over E(Zpr), it
only checks whether the point obtained by reducing the result E(Zpr) modulo r
is on the E(Fr) curve (i.e., whether it satisfies the curve equations modulo r).

Proposition 2. BV is correct.

Proof. The incorrectness of BOS comes from the fact that the small computa-
tions hits O and triggers some of the tests in ECDBL and ECADD, while in the
combined computation the conditions of the tests are not satisfied even if the
same thing happens modulo r.

3 See Sec. D.3 which details the curve and Jacobian equation originally used by BV.

6

Input : P ∈ E(Fp), k ∈ {1, . . . , ord(P)− 1}
Output : Q = [k]P ∈ E(Fp)

1 Choose a small random integer r.
2 Compute the combined curve E′(Zpr).3

3 (Xpr : Ypr : Zpr) = ECSM(P, k, pr)

4 if Y 2
prZpr = X3

pr + aXprZ
2
pr + bZ3

pr mod r then
5 return (Xpr mod p : Ypr mod p : Zpr mod p)
6 else
7 return error

Algorithm 3: ECSM protected with BV countermeasure BV(P, k, p).

Instead of the broken comparison, BV verifies that the point is on the curve
modulo r. In the problematic case when the point modulo r is O, we have
that Zpr ≡ 0 mod r, so the equation on line 4 of Alg. 3 is violated only if
Xpr 6≡ 0 mod r. We will see in the proof of Prop. 3 in the next section that this
is never the case. ut

Note that the correctness of BV comes with a drawback: indeed, faults may
go undetected if they happen before O is reached in the computation modulo
r as the intermediate point quickly tends to (0 : 0 : 0) and stay there until the
end. This claim will be underpinned in the next section.

Besides, we note that BV is more flexible with respect to the choice of the
r parameter (line 1 of Alg. 3) than BOS (line 1 of Alg. 2). However, as will be
underlined in Sec. 5.3, this is a security weakness of BV: the parameter r should
preferentially be chosen to be a prime. Notice that this choice would nonethe-
less invalidate BV as a countermeasure against side-channel attacks (as claimed
in the original paper), as prime numbers of given bitwidth are not uniformly
distributed.

3.3 Conclusion

We can now compare BOS and BV.

– BOS is incorrect and because of that may leak information on its inputs,
even in the absence of fault attacks. Besides, BOS also has a problem with
divisions in the Zpr ring;

– BV is correct, however it employs a point verification technique that is of
course specific to elliptic curve computations and is thus less generic (in the
sense that the countermeasure is not trivially portable to any other modular
computation).

An obvious question is now: is it possible to get the best of both worlds, i.e.,
a generic countermeasure that relies on the classical modular extension scheme
(Fig. 1), and is correct? The answer is yes, as we will see in the next section
which introduces “test-free algorithms” to fix BOS correctness issue.

7

4 Test-Free Algorithms

The correctness issue of BOS comes from the fact that the conditions of the tests
in the ECDBL (Alg. 6) and ECADD (Alg. 7) algorithms are not satisfied at the
same time in the small and the combined computations. Because of that, these
computations do not perform the same sequence of operations, invalidating the
modular extension invariant.

4.1 Test-Free ECSM

A simple fix is getting rid of the conditional tests. This simplification engenders
partial domain correctness as exposed in [16]. We detail the test-free variants of
Alg. 6, 7, and 8 in Alg. 9, 10, and 11, which can be found in Sec. B.2. Actually,
“test-free” refers to the absence of point comparison (line 1 of Alg. 6, and lines 1,
2, 3, and 4 of Alg. 7). The test depending on the scalar value (i.e., at line 4 of
Alg. 11) is still present as it will always be satisfied at the same time in both
computations (in Zpr and Fr), since the same scalar is used.

The ECSM [k]P has no tests which condition is satisfied if k is a TF-good
scalar (see Prop. 3 for a rigorous proof).

Definition 6 (TF-good scalar). Let P ∈ E(Zn). Let k > 0. The scalar k is
said to be TF-good with regard to P and E(Zn) if and only if:
1. ord(P) 6 | bk/2ic, for dlog2 ke − 1 ≥ i ≥ 1, and for i = 0 when k0 = 1,
2. ord(P) 6 | bk/2ic − 1, for dlog2 ke − 1 ≥ i ≥ 0 when ki = 1,
3. ord(P) 6 | bk/2ic − 2, for dlog2 ke − 1 ≥ i ≥ 0 when ki = 1.

Remark that a scalar k such that 0 < k < ord(P) is always TF-good.
This definition of TF-good scalar is relative to the left-to-right ECSM algo-

rithm, but our results are portable to the other variants as well. Interestingly, the
same definition would apply to the left-to-right add-always ECSM algorithm [12,
§3.1]. However, the definition would differ for other variants; for instance, the
case of the right-to-left ECSM algorithm is detailed in Sec. C.2, and generally
more ECSM algorithms are treated in Sec. C.

The relevance of TF-good concept is given in Prop. 3.

Proposition 3 (Partial domain correctness of TF-ECSM (Alg. 11 at
page 29)). Let P = (XP : YP : ZP) ∈ E(Zn), and k > 0. We have:
1. if k is TF-good with regard to P and E(Zn) then TF-ECSM(P, k, n) =

ECSM(P, k, n);
2. Otherwise, TF-ECSM(P, k, n) is O, specifically: it has the form (0 : Y : 0),

where Y = 0 except if k0 = 1 and ord(P) | k.

Proof. We start with the first point. We want to prove that when k is TF-
good, then the test-free versions of the algorithms return the same results as the
original version. We will prove this by showing that it is equivalent to say “k is
TF-good” and “during the execution none of the conditions of the tests in the
original algorithms are satisfied”, and thus the tests can be removed safely.

8

The only conditional test in ECDBL (line 1 of Alg. 6) checks whether the
point [bk/2i+1c]P given as argument is O. This condition will never be met when
k is TF-good by point 1 of Def. 6.

The same reasoning applies to the first conditional test in ECADD (line 1
of Alg. 7), but with point 2 of Def. 6. Indeed, the value of Q in the ECADD is
[2bk/2i+1c]P = [bk/2ic − 1]P because ki = 1.

The second conditional test in ECADD (line 2 of Alg. 7) checks whether the
point given as argument to ECSM is O, in which case ord(P) = 1, and all three
conditions in Def. 6 are violated.

The third conditional test in ECADD (line 3 of Alg. 7) checks if Q = −P ,
that is if P +Q = O. Let us suppose that is the case. It would mean that after
the ECADD (if this test was removed), we would be in the situation where the
point given as argument to ECDBL is O, which we already have shown to be
impossible by point 1 of Def. 6.

The fourth and last conditional test in ECADD (line 4 of Alg. 7) checks if
Q = P , that is if P − Q = O. Let us suppose that is the case. Before entering
ECADD, we know that ki = 1 and that Q = [bk/2ic−1]P . Now, since P−Q = O
it means that ord(P) | bk/2ic − 2, which contradicts point 3 of Def. 6.

This proves point 1. Let’s now prove point 2 by studying what happens when
the condition of one of the removed tests would be satisfied.

We call “step u” the ECSM loop iteration where i = u. We note Qu = (Xu :
Yu : Zu) the value of the intermediate point Q at the end of step u, the final
result being (X0 : Y0 : Z0).

We assume that condition 1 in Def. 6 is violated. If it is only violated for
i = 0 and k0 = 1, then [k]P = O. In this case, the last operation is ECADD
on [k − 1]P = −P and P . So, as can be seen in Alg. 7, B = 0, hence the result
takes the form (0 : Y0 : 0).

If the condition 1 in Def. 6 is violated for i > 0, then [bk/2ic]P = O. If this
value has been obtained by an ECDBL, Zi = 0 =⇒ Xi = 0 (refer to Alg. 6).
If this value has been obtained by an ECADD, then according to the previous
argument (B = 0 in Alg. 7), we also have Zi = Xi = 0. Now, as i > 0, the
computation continues with at least one ECDBL, which results in (0 : 0 : 0).
Hence, all forecoming computations result in (0 : 0 : 0).

Let us now assume that the condition 2 in Def. 6 is violated. If it is violated
for i = 0, then k−1 is even, and in the last ECDBL, we have Z = 0 =⇒ X = 0.
In the last ECADD, we have B = C = 0, hence the result is (0 : 0 : 0). The
same reasoning can be done for i > 0.

Finally, let us assume that the condition 3 in Def. 6 is violated. For i = 0,
this means that ord(P) | k− 2 when k0 = 1, hence [k− 1]P = P . So, at the last
ECDBL, we have A = B = 0 =⇒ C = 0, and the result is equal to (0 : 0 : 0).
The same holds for i > 1, since (0 : 0 : 0) is a fixed point.

Therefore, each time k is not TF-good, the result is (0 : Y0 : 0), where Y0 is
null, except if k is even and is equal to ord(P). ut

9

4.2 Simplifying BV

When computing [k]P on the curve E(Fp), the scalar k is usually chosen such
that 0 < k < ord(P). Consequently, according to Def. 6, k is always TF-good
with regard to P . Thus, by Prop. 3 we can use the test-free variants of the
doubling and addition algorithms for BV without loss of generality. We can now
give a rigorous proof of the correctness of BV (Prop. 2).

Proof. When k is TF-good with regard to P mod r on E′(Zpr) mod r, we know
that BV gives the correct output.

When k is TF-bad4 with regard to P mod r on E′(Zpr) mod r, we know from
Prop. 3 that the result is of the form (0 : Y : 0), which satisfies line 4 of Alg. 3.

When k = ord(P) and k0 = 0, k is TF-good but one may wonder what
happens since the result is O. In this case, reusing the notation from Prop. 3, we
have Z0 = 0, i.e., 8Z3

1Y
3
1 = 0. We know that Z1 6= 0 because Q1 is not O, which

means that Y1 = 0, which implies that X0 = 0, and thus that the equation on
line 4 of Alg. 3 is satisfied as expected. ut

The test-free variant of the ECSM algorithm thus allows for a correct simpli-
fication of BV5, but more interestingly, it allows to fix the correctness problem
of BOS.

4.3 Fixing BOS

We now propose to fix BOS countermeasure by using the test-free variant of the
elliptic curve algorithms. We call this new countermeasure TF-BOS.

Input : P ∈ E(Fp), k ∈ {1, . . . , ord(P)− 1}
Output : Q = [k]P ∈ E(Fp)

1 Choose a small prime r, a curve E(Fr), and a point Pr on that curve.
2 Determine the combined curve E(Zpr) and point Ppr using the CRT.

3 (Xpr : Ypr : Zpr) = TF-ECSM(P, k, pr)
4 (Xr : Yr : Zr) = TF-ECSM(Pr, k, r)

5 if (Xpr mod r : Ypr mod r : Zpr mod r) = (Xr : Yr : Zr) then
6 return (Xpr mod p : Ypr mod p : Zpr mod p)
7 else
8 return error

Algorithm 4: TF-ECSM with modular extension protection TF-BOS(P, k, p).

Proposition 4. TF-BOS is correct.

4 We say that a scalar is TF-bad if it is not TF-good.
5 Recall that a test, e.g. P = Q (where P and Q are in projective representation),

requires four products, since P = Q is equivalent to (ZP = ZQ = 0) ∨ ((XPZQ =
XQZP) ∧ (YPZQ = YQZP)), which has a non-negligible cost.

10

Proof. Whether k is TF-bad or not, the result in E(Zpr) reduced modulo r and
the result in E(Fr) will always match during the computation, and in particular
when it ends. Thus, the modular extension invariant verification done on line 5
of Alg. 4 will always be satisfied in the absence of faults. ut

Intuitively, what Prop. 4 says is that TF-BOS is the correct way to implement
modular extension in general. However, the correctness of TF-BOS comes with
the same drawback as BV’s correctness: it reduces the fault detection probability,
albeit in a quantifiable and negligible manner in practice.

We remark the interesting duality between BOS and TF-BOS: in the same
cases where BOS is incorrect, TF-BOS is blind to fault injections. Indeed, when
TF-BOS is used with a TF-bad scalar, the computation in E(Zpr) taken modulo
r will, at some iteration of the ECSM, be equal to O. Now, as shown in the
proof of the second point of Prop. 3, once a point is equal to O it remains so,
and worse, its coordinates become (0 : 0 : 0) with a single additional iteration
(owing to the fact that tests, especially tests of equality to O, are absent in
the test-free version of the ECSM). Now, if any coordinate is faulted to nonzero
value, the other coordinates might stay at zero, which contaminates the result to
(0 : 0 : 0) again after one TF-ECADD or TF-ECDBL. A quantitative analysis of
impact of faults under TF-bad scalar is given in Sec. 6.3, in particular in Prop. 7.

Proposition 5 (Probability of TF-bad scalars). The probability of a scalar

k to be TF-bad with respect to a point P ∈ E(Fr) is O
(

1
ord(P)

)
.

Proof. Let n = dlog2 ke the size of k and m = dlog2 ord(P)e the size of ord(P).
Using the same notation as in Def. 6, for all i < m all of the three conditions

defining TF-good scalars are met. For each i ≥ m, there are (2i+1 − 2i) = 2i

numbers of size i bits, out of which a fraction of approximately 2i

ord(P) violates

one of the TF-good conditions (say the 1st condition).
For k to be TF-bad it suffices that it exists an i for which one of the TF-good

conditions is violated, so the probability of k being TF-bad is:

PTF-badP
(k) ≈ 1−

 ∏
m≤i≤n

1−
2i

ord(P)

2i

 = 1−
(

1− 1

ord(P)

)n−m

= O

(
1

ord(P)

)
.

ut

In the context of the modular extension countermeasure against fault injec-
tion attacks (recall Fig. 1), TF-bad scalars are more likely to occur in the small
field Fr than in the large field Fp or the large ring Zpr. Indeed, an elliptic curve
over Fr has about r points, with r � p, but the scalar k has about size p. Indeed,
for instance in ECDH and ECDSA, k is chosen uniformly in {1, . . . , ord(P)−1},
where ord(P) ≈ p. We have this lemma:

11

Lemma 1. Let E(Fp) an elliptic curve over Fp given by equation y2 = x3+ax+b
mod p (recall Def. 1), and P = (xP , yP) a point on this curve. Then the set
E(Fr) of pairs (xr, yr) ∈ Fr satisfying y2r = x3r + arxr + br mod r, with ar = a
mod r and br = (y2P − x3P − axP) mod r. is an elliptic curve over Fr, and
Pr = (P mod r) = (xP mod r, yP mod r) belongs to it.

Proof. Clearly, by Def. 1, E(Fr) is an elliptic curve (provided the discriminant
−16(4a3r + 27b2r) is nonzero). Besides, as P ∈ E(Fp), there exists an integer λ
such that y2P = x3P +axP + b+λp. Therefore, modulo r, we have (yP mod r)2 =
(xP mod r)3 + (a mod r)(xP mod r) + (b + λp mod r), hence Pr = (xP mod
r, yP mod r) ∈ E(Fr), if br = b+ λp mod r = (y2P − x3P − axP) mod r. ut

We compute some examples based on curve P-192 based on Fp (p being a
192 bit prime), which will be our running example in Sec. 6. The parameters of
this curve are recalled in Sec. 6.1. We assume k is on 192 bits, and we choose
small prime numbers r � p as in Sec. 6.2. Using Lem. 1 we derive a curve over
Fr and a point from P-192. We then compute, thanks to Prop. 5, the probability
of a scalar k to be TF-bad. Results obtained from SAGE are given in Tab. 1.

Table 1: Illustration of Prop. 5 for some small r values.

r ord(Pr) PTF-badPr
(k)

251 267 5.0 · 10−1

1021 509 3.0 · 10−1

2039 2105 8.2 · 10−2

4093 4041 4.4 · 10−2

65521 65531 2.7 · 10−3

4294967291 2147439270 7.5 · 10−8

18446744073709551557 18446744077549890349 6.9 · 10−18

It can be seen in Tab. 1 that for r = 1021 and r = 4294967291, the order
of Pr is not maximal. Actually, for those two curves, Pr is not a generator of
E(Fr), and its order is half the number of points of the curve.

This justifies the recommendation made in BOS [8, Sec. 4] to build E(Fr) as
a curve with large order and Pr as a generator (see Appendix D.1).

4.4 Using Edwards Curves

Edwards curves [14] have been studied in the context of cryptography by Bern-
stein and Lange [4]. On Edwards curves, the addition law is complete: addition
formulas work for all pairs of input points. In particular, there is no troublesome
point at infinity. Therefore, there is no such ECADD and ECDBL for Edwards
curves, but one test-free formula for addition (the input points being equal or
not). This formula is given in [4, Sec. 4, page 9] for projective coordinates. There-
fore, we underline that Edwards curves are especially well suited for the modulus
extension countermeasure, since any avatar (such as BOS or BV) is correct and
there is no possibility of TF-bad scalars.

12

4.5 Conclusion

All the algorithms proposed in this section are correct and offer the same security
level. In particular, we note that when k is TF-good with regard to the small
computation, all three countermeasures are correct and secure6. Moreover, it
follows trivially from Def. 6 that it is possible to statically determine if a given
scalar is TF-bad with regard to a point and its curve. In addition, it is important
to note that in practice with r ≈ 232, the problems with TF-bad scalars become
anecdotal (see Prop. 5).

Edwards curves are definitely a nice option to implement fault detection
using modular extension, since all scalars are TF-good (there is no tests in
Edwards curves). However, as real-world industrial applications are still based on
Weierstrass curves, we continue the paper by taking them as examples. Hence,
in the sequel, we assume curves have TF-bad scalars.

5 Formal Security Study of Modular Extension

5.1 Inversions in Direct Products

We will start by addressing the issue of divisions in Zpr. It is actually possible
to circumvent this problem in the modular extension setting. Indeed, divisions
can be optimized, as expressed in the following proposition.

Proposition 6 (Divisions optimization). To get the inverse of z in Fp while
computing in Zpr, one has:

– z = 0 mod r =⇒ (zp−2 mod pr) ≡ z−1 mod p,
– otherwise (z−1 mod pr) ≡ z−1 mod p.

Proof. If z = 0 mod r, then z is not invertible in Zpr. However, zp−2 exists in
Zpr, and (zp−2 mod pr) mod p = zp−2 mod p = z−1 mod p. Notice that, as p is
statically known, a precomputed efficient addition chain can be used.

Otherwise, when z 6= 0 mod r, we have in Zpr that z−1 = zϕ(pr)−1 =
zpr−p−r mod pr. Now, (z−1 mod pr) mod p = z−1 mod p if and only if: ϕ(p)
divides (pr − p − r) − (−1). But (pr − p − r) − (−1) = (p − 1)(r − 1), which is
indeed a multiple of ϕ(p) = p− 1. ut

Notice that in Proposition 6, we assume 0 ≤ z < p. Indeed, in practical ECC
computations, the scalar is chosen such that it is smaller than the generator
point (base point) order. Therefore, no “division by 0” is supposed to show up
in Fp. Typically, as divisions occur only in projective to affine conversions, we
have that the Z coordinate (whose value matches z in Proposition 6) is non-zero
because the final point is not at infinity.

6 In the sense that the fault detection probability is maximal for the modular extension
method.

13

Remark 2. Golić and Tymen introduce in [19] a masking countermeasure of
the advanced encryption standard (AES), called the “Embedded Multiplicative
Masking”, which also requires to embed a finite field into a larger ring. In this
context, the over-structure is a polynomial extension of some extension of F2,
but the idea is similar to modular extension. In particular, the authors notice in
section 5.1 of their paper [19] that inversion in the base field can be obtained in
the over-ring as an exponentiation to the base field order minus two.

But the inversion procedure we give in Proposition 6 is novel, in that we
allow an optimization if the number is inversible in the over-ring. This requires
a test, which we can do safely without disclosing information in the context of
fault attacks detection. Nonetheless, such optimization would be insecure in the
context of the “Embedded Multiplicative Masking” countermeasure, since this
would leak information about the value of the mask. This is a first-order flaw
which would undermine the security of the “Embedded Multiplicative Masking”
protection against side-channel attacks.

The section E discusses the complexity of inversions as in Prop. 6. An upper-
bound for the expected overhead is (10× (1− 1

r) + 384× 1
r)/10 ≈ 1 + 10−8 when

r is a 32 bit number, which is negligible in practice.

5.2 Security Analysis

Definition 7 (Fault model). We consider an attacker who can fault data by
randomizing or zeroing any intermediate variable, and fault code by skipping any
number of consecutive instructions.

Definition 8 (Attack order). We call order of the attack the number of faults
(in the sense of Def. 7) injected during the target execution.

In the rest of this section, we focus mainly on the resistance to first-order
attacks on data. Indeed, Rauzy and Guilley have shown in [38] that 1. it is
possible to adapt the modular extension protection scheme to resist attack of
order D for any D by chaining D repetitions of the final check in a way that
forces each repetition of the modular extension invariant verification to be faulted
independently, and 2. faults on the code can be formally captured (simulated)
by faults on intermediate variables.

Definition 9 (Secure algorithm). An algorithm is said secure if it is correct
as per Def. 5 and if it either returns the right result or an error constant when
faults have been injected, with an overwhelming probability.

Theorem 1 (Security of the test-free modular extension scheme). Test-
free algorithms protected using the modular extension technique, such as TF-
BOS, are secure as per Def. 9. In particular, the probability of non-detection is
inversely proportional to the security parameter r.

14

Proof. Faulted results are polynomials of faults. The result of an asymmetric
cryptography computation can be written as a function of a subset of the inter-
mediate variables, plus some inputs if the intermediate variables do not suffice
to finish the computation. We are interested in the expression of the result as
a function of the intermediate variables which are the target of a transient or
permanent fault injection. We give the formal name x̂ to any faulted variable
x. For convenience, we denote them by x̂i, 1 ≤ i ≤ n, where n ≥ 1 is the the
number of injected faults. The result consists in additions, subtractions, and
multiplications of those formal variables (and inputs). Such expression is a mul-
tivariate polynomial. If the inputs are fixed, then the polynomial has only n
formal variables. We call it P (x̂1, . . . , x̂n). For now, let us assume that n = 1,
i.e., that we face a single fault. Then P is a monovariate polynomial. Its degree
d is the multiplicative depth of x̂1 in the result.

A fault is not detected if and only if P (x̂1) = P (x1) mod r, whereas P (x̂1) 6=
P (x1) mod p. Notice that the latter condition is superfluous insofar since if it
is negated then the effect of the fault does not alter the result in Fp.

Non-detection probability is inversely proportional to r. As the faulted variable
x̂1 can take any value in Zpr, the non-detection probability Pn.d. is given by:

Pn.d. =
1

pr − 1
·

∑
x̂1∈Zpr\{x1}

δP (x̂1) = P (x1) mod r

=
1

pr − 1
·
(
− 1 + p

r−1∑
x̂1=0

δP (x̂1) = P (x1) mod r

)
. (1)

Here, δcondition is equal to 1 (resp. 0) if the condition is true (resp. false).

Let x̂1 ∈ Zr, if P (x̂1) = P (x1) mod r, then x̂1 is a root of the polynomial
∆P (x̂1) = P (x̂1)−P (x1) in Zr. We denote by #roots(∆P) the number of roots of
∆P over Zr. Thus (1) computes (p×#roots(∆P)−1)/(pr−1) ≈ #roots(∆P)/r.

Study of the proportionality constant. A priori, bounds on this value are broad
since #roots(∆P) can be as high as the degree d of ∆P in Zr, i.e., min(d, r−1).
However, in practice, ∆P looks like a random polynomial over the finite field
Zr, for several reasons:

– inputs are random numbers in most cryptographic algorithms, such as prob-
abilistic signature schemes,

– the coefficients of ∆P in Zr are randomized due to the reduction modulo r.

In such case, the number of roots is very small, despite the possibility of d being
large. See for instance [34] for a proof that the number of roots tends to 1 as
r →∞. Interestingly, random polynomials are still friable (i.e., they are clearly
not irreducible) in average, but most factors of degree greater than one happen
not to have roots in Zr. Thus, we have Pn.d. & 1

r , meaning that Pn.d. ≥ 1
r but is

close to 1
r . A more detailed study of the theoretical upper bound on the number

of roots is available in Sec. F.

15

The same law applies to multiple faults. In the case of multiple faults (n > 1),
then the probability of non-detection generalizes to:

Pn.d. = 1
(pr−1)n ·

∑
x̂1,...,x̂n∈Zpr\{x1}×...×Zpr\{xn}

δP (x̂1,...,x̂n)=P (x1,...,xn) mod r

= 1
(pr−1)n ·

∑
x̂2,...,x̂n∈

∏n
i=2 Zpr\{xi}

 ∑
x̂1∈Zpr\{x1}

δP (x̂1,...,x̂n)=P (x1,...,xn) mod r

= 1

(pr−1)n ·
∑

x̂2,...,x̂n∈
∏n

i=2 Zpr\{xi}

[p×#roots(∆P)− 1]

= 1
(pr−1)n · (pr − 1)n−1 [p×#roots(∆P)− 1]

=
p×#roots(∆P)− 1

pr − 1
.

Therefore, the probability not to detect a fault when n > 1 is identical to that
for n = 1. Thus, we also have Pn.d. ≈ 1

r in the case of multiple faults of the
intermediate variables7. ut

Examples can be found in Sec. G that illustrate the security property: in-
deed, Pn.d. is inversely proportional to r, with a proportionality constant which
depends on the specific algorithm. The purpose of Sec. 6 is to show that the
product Pn.d. × r is constant in practice. Moreover, we explicit this constant for
ECSM computations.

5.3 Modular Extension the Right Way

Here we recap how to correctly implement the modular extension countermeasure
in order to achieve maximum security.

Vocabulary. We call nominal computation the original unprotected computation
over Fp. We call small computation the computation performed over a smaller
field Fr. We call combined computation the same computation lifted into the
direct product Zpr of Fp and Fr.

Test-free algorithms. Protecting a computation using a modular extension based
countermeasure means that this computation will be run twice for comparison;
and thus the operation performed in the combined and in the small computation
must be the equivalent. When there are tests depending on the data in Fp in the
nominal computation, the conditions of these tests may not be satisfied at the
same time in the small and in the combined computations, which would make
the modular extension invariant check fail while no faults have been injected (as
we have seen in BOS countermeasure for example). This problem can be cir-
cumvented by using a test-free version of the computation. Of course this may

7 Note that this study does not take correlated faults into account.

16

cause the test-free computation to only be correct for a part of the domain of the
nominal computation. Hopefully, the part of the domain for which the computa-
tion becomes incorrect can be statically determined and is negligible in practice
for ECSM (and does not exists for CRT-RSA which nominal computation is
naturally test-free, idem for ECC on Edwards curves).

Conditions on the security parameter. The size r of the mathematical structure
underlying the small computation is the security parameter of a modular ex-
tension countermeasure. Several conditions have to be met to obtain maximum
security and the best performance:
– r must be co-prime with p, but as p is a larger prime this should never be a

problem;
– r must be prime itself, in order to avoid the maximum possible division

problems in the combined computation (performance), and for Fr to be a
field, thus maximizing the chances of ord(P) to be big enough in E(Fr)
(security);

– r should be large enough for the non-detection probability to be sufficiently
low, but at the same time should remain small enough to keep the overhead of
the countermeasure reasonable (we have seen that for CRT-RSA and ECSM,
a value of r on 32 bits is a good option);

– r may be static, but as pointed out in [2], it helps against against side-channel
analyses if it is randomly selected at runtime;

– r should not be public information contrary to what is said in [8], as it
would give an attacker the opportunity to forge input values which breaks
the countermeasure (e.g., a point P such that ord(P mod r) is very low in
the case of ECSM, or a message which is a multiple of r in CRT-RSA);
These recommendations can be understood as “choose r so that P mod r is of

maximal order on E(Fr)”, which similar to what is suggested in the original BOS
paper [8] (see also the same comment made after the presentation of Tab. 1).

6 Practical Case Study with TF-BOS

In order to practically validate our theoretical results, we have implemented TF-
BOS (Alg. 4) on an ARM Cortex-M4 microcontroller (specifically an STM32).
For the sake of simplicity, we decided to use E(Zpr) mod r as E(Fr) and P mod r
as Pr. Hence, the security results may be slightly negatively impacted.

6.1 Setup

The code is written in C and uses the GMP library8. We used the P-192 elliptic
curve from NIST [41, D.1.2.1]. This curve is the less secure amongst that pro-
posed by NIST, but is chosen because our ARM chip is rather low-end and we

8 We used the mini-gmp implementation for easy portability onto the ARM microcon-
troller.

17

nonetheless need a reasonable speed. Besides, we opted for a curve standardized
by NIST because they are still widely used in the industry. Parameter values are
listed below:

Field characteristic p = 0xfffffffffffffffffffffffffffffffeffffffffffffffff

Curve equation a = 0xfffffffffffffffffffffffffffffffefffffffffffffffc

coefficients b = 0x64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1

Point coordinates
xP = 0x188da80eb03090f67cbf20eb43a18800f4ff0afd82ff1012

yP = 0x07192b95ffc8da78631011ed6b24cdd573f977a11e794811

Point order ord(P) = 0xffffffffffffffffffffffff99def836146bc9b1b4d22831

Fig. 2 shows an architectural overview of the electromagnetic fault injec-
tion (EMFI) analysis platform we used for our experiments. EMFI has recently
emerged as an efficient non-invasive fault attack, which is able to perturb a circuit
through its package. The platform includes a signal generator able to generate
pulses of 1.5 ns width amplified by a broadband class A amplifier (400 MHz,
300 Watt max), and an electromagnetic (EM) probe. An oscilloscope and a data
timing generator are also present, so that we can precisely (with 1 ps precision)
control the delay before the injection. All experiments have been performed at
a settled spatial location of the EM probe relative to the ARM microcontroller:
a fixed position and a fixed angular orientation. A boundary-scan (also known
as JTAG) probe has been used to dump internal registers and memory contents
after injection (for attack analysis purpose only).

Fig. 2: EMFI platform.

We manually explored the effect of different width and power of the EM pulse,
and chose values which maximize the faulting success rate. Then, we manually
tuned the delay before the injection happens in order to maximize the probability
of obtaining an exploitable fault for each value of r.

6.2 Method

In order to assess our theoretical results, we performed multiple attack cam-
paigns with different values for r. The practical results allowed us to verify our
theoretical predictions, i.e., that the probability of non-detection Pn.d. is inversely
proportional to r (see Sec. 5.2). At the same time we were able to measure the

18

cost of the countermeasure and confirm that the size of r is a security parameter
that trades off speed for security.

– The value r = 1 basically means that there is no countermeasure, since
Fr = F1 = {0}. It helps verify that the platform is indeed injecting faults
effectively, i.e., that most of the fault injection attempts are successful.

– The small values of r (on 8 to 16 bits) aim at verifying that the probability
of detection / non-detection follow our theoretical prediction.

– The values of r on 32 and 64 bits represent realistic values for an operational
protection.

Each value of r is chosen to be the largest prime number of its size. That is, if
n is the size of r in bits, then r is the largest prime number such that r < 2n.

6.3 Security Results

Tab. 2 shows the security assessment of the TF-BOS countermeasure. For each
value of r (lines of the table) we ran and injected random faults in approximately9

1000 ECSM [k]P using a random 192-bit k. In total, the execution of the tests
we present took approximately 6 hours of computation. The results of our attack
campaign are depicted in the last four columns.

– Correct results for which there is no error detection are simply fault injections
without effect (true negatives).

– Correct results for which an error is detected are false positives, and should
be minimized. Those false positive alarms are annoyances, as they warn
despite no secret is at risk security-wise.

– The incorrect results for which an error is detected (true positives) should
appear with probability O(1− 1

r).
– The incorrect results for which there is no error detection are false negatives,

and should really be minimized: otherwise, the countermeasure is bypassed
without notice and sensitive information may leak.

Once renormalized to remove the true negatives, the last column of Tab. 2
(false negatives) represents the non-detection probability Pn.d.. The relationship
between r and Pn.d. is plotted in Fig. 3. The experimental results are the dots
with error bars (representing plus/minus one sigma), and match the theoretical
curve in blue color. The asymptotical equivalent, namely r 7→ 96/r, is superim-
posed in red color, and is a valid approximation for r & 2000, which is reasonable
since practical values of r are ≈ 232.

Proposition 7 (Pn.d. proportionality factor for TF-BOS). In the case of
TF-BOS on curve P-192, the proportionality constant is ≈ 96.

Lemma 2. During TF-ECSM (Alg. 11), if the coordinates of the intermediate
point becomes multiples of r, they stay so until the end.

9 A bit less in practice: a few attempts were lost due to communication errors between
our computer and the JTAG probe’s gdb-server.

19

Table 2: TF-BOS security assessment results.

r value
r size Positives (%) Negatives (%)

(bit) true false true false

1 1 0.00 0.00 2.74 97.3
251 8 63.7 0.00 2.56 33.8
1021 10 89.1 0.00 2.96 7.95
2039 11 98.8 0.00 0.00 1.18
4093 12 97.6 0.00 1.91 0.48
65521 16 97.8 0.00 2.21 0.00

4294967291 32 97.2 0.00 2.81 0.00
18446744073709551557 64 99.8 0.00 0.21 0.00

Fig. 3: Relationship between Pn.d. and r.

20

Proof. By Prop. 3, we know that when a coordinate becomes 0 it stays so until
the end, for instance when k is TF-bad with regard to Pr on the small curve. In
the combined computation on the curve E(Zpr), this translates to coordinates
being null modulo r when k is TF-bad with regard to P on the small curve
E(Fr). ut

Proof. Using Lem. 2, we can now prove Prop. 7.
The first thing to note is that despite the fact that we are checking the

validity of three coordinates modulo r, the Pn.d. is not O(1
r3). That is because

the three coordinates are extremely interdependent, fault-wise (as Lem. 2 shows,
for instance): if one coordinate is faulted, then it is very likely that all coordinates
are faulted. Actually it should be sufficient to perform the modular extension
invariant check only on one of the coordinates, but we chose to still check all of
them as it is virtually cost-free.

If a fault occurs before step i where k satisfies one of the TF-bad conditions,
then the fault is not detected. Indeed in these cases, both the result of the ECSM
on E(Zpr) modulo r and the result on E(Fr) are equal to (0 : 0 : 0).

This happens with probability 1
2 (1 − (1 − 1

ord(P))
192−dlog2 ord(P)e), i.e., the

probability of having a TF-bad scalar (see Prop. 5), with the 1
2 factor to accounts

for the faulting to happen before step i, where it is likely to be absorbed by a
subsequent product with a multiple of r.

If we approximate the order of the point P on the E(Fr) curve by r, we have
1
2 (1 − (1 − 1

r)192−dlog2 re) = (192−dlog2 re)/2
r + O(1

r). In practice, we can safely
remove the “−dlog2 re” part as log2 r will be of negligible value, especially once

divided by 2. Thus we have Pn.d. ≈ 192/2
r . ut

As Tab. 2 and Fig. 3 show, practical values of r are sufficiently large for the
latter equality to be true, and thus for the security to be highly efficient.

6.4 Performance Results

The table presented in Tab. 3 shows the cost of the modular extension coun-
termeasure in terms of speed10. For each value of r (lines of the table) we list
the execution time of the ECSM computation over Zpr, of the one over Fr, of
the test (comprising the extraction modulo r from the result of the computation
over Zpr and its comparison with the result of the computation over Fr), and
eventually the overhead of the countermeasure.

In the unprotected implementation, the ECSM computation over Fp took
683 ms (which naturally corresponds to the 683 ms over Zpr when r = 1 as
shown in Tab. 3, except that there is no need for the 24 ms needed by the com-
putation over Fr which is mathematically trivial, but not optimized by gcc).
We can see that when r is on 32 bits, the alignment with int makes mini-gmp

faster, resulting in the protected algorithm running for 1004 ms, incurring a fac-
tor of only about ×1.47 in the run time compared to the unprotected algorithm.

10 Note that we compiled the code with gcc -O0 option.

21

Table 3: TF-BOS performance results.

r value
r size time (ms)

overhead
(bit) Zpr Fr test

1 1 683 24 �1 ×1.04
251 8 883 91 �1 ×1.43
1021 10 899 100 �1 ×1.46
2039 11 902 197 �1 ×1.61
4093 12 903 197 �1 ×1.61
65521 16 883 189 �1 ×1.56

4294967291 32 832 172 �1 ×1.47
18446744073709551557 64 996 246 �1 ×1.82

This is a particularly good performance result. Indeed, in the context of digital
signature, for instance ECDSA [22], an alternative to the verification by modu-
lar extension is the mere verification of the signature. However, the verification
in ECDSA incurs an overhead of about ×4.5 (measured with openssl speed

ecdsa for P-192), indeed, in ECDSA, the signature verification is much more
complex than the signature generation. Moreover, the curve P-192 that we use
is among the smallest standardized curves, and the performance factor is di-
rectly tied to the increase in the size of the ring in which the computations are

performed: when Fp grows, the countermeasure gets cheaper as log2(pr)
log2(p)

will be

smaller.

7 Conclusion and Perspectives

In this paper, we have studied how to efficiently protect elliptic curve scalar
multiplications (ECSM), against fault injection attacks. We have focused on
countermeasures which guarantee the integrity of the computation result, hence
covering most existing and future faults attacks.

Specifically, we have reviewed the state of the art of the modular extension
protection scheme in existing countermeasures for ECSM algorithms, namely
BOS [8] and BV [2]. We have shown that BOS is incorrect, while BV is correct
but weaker against fault injection attacks.

We have introduced the notion of test-free algorithms as a simplification
of BV and as a solution to fix the incorrectness of BOS. We call TF-BOS our
contributed variant of the BOS modular extension based countermeasures. While
TF-BOS fixes the correctness issue of BOS, it also inherits from one of the
weakness of BV. We then proposed a characterization of the scalar argument
of the ECSM with regard to the elliptic curve point argument as TF-good/TF-
bad. Interestingly, it is in the same condition (when the scalar is TF-bad) that
BOS returns an incorrect result and that BV and TF-BOS cannot detect fault
injections.

22

We have formally studied the security of our proposed TF-BOS countermea-
sure, and proven that the fault non-detection probability is inversely proportional
to the security parameter.

Finally, we implemented TF-BOS on an ARM Cortex-M4 microcontroller
and performed a systematic fault injection campaign for several values of the
security parameter, which confirmed the security of the countermeasure, and
provided figures for its practical performance.

To our best knowledge, this is the first ECSM implementation to be provably
protected against fault injection attacks. We used it to show that the cost of the
TF-BOS countermeasure is extremely reasonable: with a 32-bit value for the
security parameter, the code is less than 1.5 times slower. Our fault
injection campaign revealed that it is also very efficient: using the same 32-bit
security parameter, 100% of the fault injections were detected.

A notable conclusion of our study is that with regard to protection against
fault injection attacks, Edwards curve are the best choice for ECC, as the com-
pleteness of their addition formula avoids the existence of TF-bad scalars.

Our main perspective is that the test-free variant of the modular extension
protection scheme is generic (e.g., it corresponds to all CRT-RSA countermea-
sures based on Shamir’s idea). A natural extension would be its application to
pairing. In this case, some computations must be carried out in field extensions,
typically with embedding degree m = 12.

Finally, the security parameter r can be chosen randomly at execution time.
As already pointed out in [2], this can make a natural protection against side-
channel analyses. The formalization of this nice side-effect of the modular ex-
tension protection scheme would be welcomed.

References

1. C. Aumüller, P. Bier, W. Fischer, P. Hofreiter, and J.-P. Seifert. Fault Attacks on
RSA with CRT: Concrete Results and Practical Countermeasures. In Kaliski et al.
[26], pages 260–275.

2. Y.-J. Baek and I. Vasyltsov. How to Prevent DPA and Fault Attack in a Unified
Way for ECC Scalar Multiplication - Ring Extension Method. In E. Dawson and
D. Wong, editors, Information Security Practice and Experience, volume 4464 of
Lecture Notes in Computer Science, pages 225–237. Springer Berlin Heidelberg,
2007.

3. G. Barthe, F. Dupressoir, P. Fouque, B. Grégoire, and J. Zapalowicz. Synthesis
of Fault Attacks on Cryptographic Implementations. In G. Ahn, M. Yung, and
N. Li, editors, Proceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security, Scottsdale, AZ, USA, November 3-7, 2014, pages
1016–1027. ACM, 2014.

4. D. J. Bernstein and T. Lange. Faster addition and doubling on elliptic curves. In
K. Kurosawa, editor, Advances in Cryptology - ASIACRYPT 2007, 13th Interna-
tional Conference on the Theory and Application of Cryptology and Information
Security, Kuching, Malaysia, December 2-6, 2007, Proceedings, volume 4833 of
Lecture Notes in Computer Science, pages 29–50. Springer, 2007.

23

5. J. Blömer, R. Gomes Da Silva, P. Gunther, J. Krämer, and J.-P. Seifert. A Practical
Second-Order Fault Attack against a Real-World Pairing Implementation. In Fault
Diagnosis and Tolerance in Cryptography (FDTC), 2014 Workshop on, pages 123–
136, Sept 2014. Busan, Korea.

6. J. Blömer, P. Günther, and G. Liske. Tampering Attacks in Pairing-Based Cryptog-
raphy. In Fault Diagnosis and Tolerance in Cryptography (FDTC), 2014 Workshop
on, pages 1–7, Sept 2014. Busan, Korea.

7. J. Blömer, M. Otto, and J.-P. Seifert. A new CRT-RSA algorithm secure against
bellcore attacks. In S. Jajodia, V. Atluri, and T. Jaeger, editors, ACM Conference
on Computer and Communications Security, pages 311–320. ACM, 2003.

8. J. Blömer, M. Otto, and J.-P. Seifert. Sign Change Fault Attacks on Elliptic Curve
Cryptosystems. In L. Breveglieri, I. Koren, D. Naccache, and J.-P. Seifert, editors,
Fault Diagnosis and Tolerance in Cryptography, volume 4236 of Lecture Notes in
Computer Science, pages 36–52. Springer Berlin Heidelberg, 2006.

9. D. Boneh, R. A. DeMillo, and R. J. Lipton. On the Importance of Checking Crypto-
graphic Protocols for Faults. In Proceedings of Eurocrypt’97, volume 1233 of LNCS,
pages 37–51. Springer, May 11-15 1997. Konstanz, Germany. DOI: 10.1007/3-540-
69053-0 4.

10. A. Boscher, R. Naciri, and E. Prouff. CRT RSA Algorithm Protected Against
Fault Attacks. In D. Sauveron, C. Markantonakis, A. Bilas, and J.-J. Quisquater,
editors, WISTP, volume 4462 of Lecture Notes in Computer Science, pages 229–
243. Springer, 2007.

11. M. Ciet and M. Joye. Practical fault countermeasures for chinese remaindering
based RSA. In Fault Diagnosis and Tolerance in Cryptography, pages 124–131,
Friday September 2nd 2005. Edinburgh, Scotland.

12. J.-S. Coron. Resistance against Differential Power Analysis for Elliptic Curve
Cryptosystems. In Ç. K. Koç and C. Paar, editors, CHES, volume 1717 of LNCS,
pages 292–302. Springer, 1999.

13. E. Dottax, C. Giraud, M. Rivain, and Y. Sierra. On Second-Order Fault Analysis
Resistance for CRT-RSA Implementations. In O. Markowitch, A. Bilas, J.-H.
Hoepman, C. J. Mitchell, and J.-J. Quisquater, editors, WISTP, volume 5746 of
Lecture Notes in Computer Science, pages 68–83. Springer, 2009.

14. Edwards, Harold M. A normal form for elliptic curves. Bulletin of the Ameri-
can Mathematical Society, 44:393–422, 9 April 2007. DOI: 10.1090/s0273-0979-07-
01153-6, ISSN 0002-9904.

15. N. El Mrabet, J. J. Fournier, L. Goubin, and R. Lashermes. A survey of fault
attacks in pairing based cryptography. Cryptography and Communications, pages
1–21, 2014.

16. J. Fan, B. Gierlichs, and F. Vercauteren. To Infinity and Beyond: Combined Attack
on ECC Using Points of Low Order. In B. Preneel and T. Takagi, editors, CHES,
volume 6917 of LNCS, pages 143–159. Springer, 2011.

17. H. L. Garner. Number Systems and Arithmetic. Advances in Computers, 6:131–
194, 1965.

18. C. Giraud. An RSA Implementation Resistant to Fault Attacks and to Simple
Power Analysis. IEEE Trans. Computers, 55(9):1116–1120, 2006.

19. J. D. Golić and C. Tymen. Multiplicative masking and power analysis of AES. In
Kaliski et al. [26], pages 198–212.

20. A. Guillevic and D. Vergnaud. Genus 2 Hyperelliptic Curve Families with Explicit
Jacobian Order Evaluation and Pairing-Friendly Constructions. In M. Abdalla
and T. Lange, editors, Pairing-Based Cryptography — Pairing 2012, volume 7708

24

of Lecture Notes in Computer Science, pages 234–253. Springer Berlin Heidelberg,
2013.

21. D. Hankerson, A. J. Menezes, and S. Vanstone. Guide to Elliptic Curve Cryptog-
raphy. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2003.

22. D. Johnson, A. Menezes, and S. Vanstone. The Elliptic Curve Digital Signature
Algorithm (ECDSA). International Journal of Information Security, 1(1):36–63,
2001.

23. M. Joye. Fault-resistant calculations on elliptic curves, Sept. 15 2010. EP Patent
App. EP20,100,155,001 ; http://www.google.com/patents/EP2228716A1?cl=en.

24. M. Joye, P. Paillier, and S.-M. Yen. Secure evaluation of modular functions. In
R. Hwang and C. Wu, editors, International Workshop on Cryptology and Net-
work Security, pages 227–229, September, 26-28 2001. http://joye.site88.net/

papers/JPY01dfa.pdf, Taipei, Taiwan.
25. M. Joye and M. Tunstall. Fault Analysis in Cryptography. Springer LNCS, March

2011. http://joye.site88.net/FAbook.html. DOI: 10.1007/978-3-642-29656-7 ;
ISBN 978-3-642-29655-0.

26. B. S. Kaliski, Jr., Ç. K. Koç, and C. Paar, editors. Cryptographic Hardware and
Embedded Systems - CHES 2002, 4th International Workshop, Redwood Shores,
CA, USA, August 13-15, 2002, Revised Papers, volume 2523 of Lecture Notes in
Computer Science. Springer, 2003.

27. D. Karaklajic, J. Fan, J. Schmidt, and I. Verbauwhede. Low-cost fault detection
method for ECC using montgomery powering ladder. In Design, Automation and
Test in Europe, DATE 2011, Grenoble, France, March 14-18, 2011, pages 1016–
1021. IEEE, 2011.

28. S.-K. Kim, T. H. Kim, D.-G. Han, and S. Hong. An efficient CRT-RSA algorithm
secure against power and fault attacks. J. Syst. Softw., 84:1660–1669, October
2011.

29. Ç. K. Koç, T. Acar, and B. S. Kaliski, Jr. Analyzing and comparing montgomery
multiplication algorithms. Micro, IEEE, 16(3):26–33, Jun 1996.

30. P. C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In M. J. Wiener,
editor, CRYPTO, volume 1666 of Lecture Notes in Computer Science, pages 388–
397. Springer, 1999.

31. R. Lashermes, M. Paindavoine, N. El Mrabet, J. J. Fournier, and L. Goubin. Prac-
tical Validation of Several Fault Attacks against the Miller Algorithm. In Fault
Diagnosis and Tolerance in Cryptography (FDTC), 2014 Workshop on, pages 115–
122, Sept 2014. Busan, Korea.

32. D.-P. Le, M. Rivain, and C. H. Tan. On double exponentiation for securing RSA
against fault analysis. In J. Benaloh, editor, CT-RSA, volume 8366 of Lecture
Notes in Computer Science, pages 152–168. Springer, 2014.

33. A. Lenstra, H. Lenstra, Jr., and L. Lovász. Factoring polynomials with rational
coefficients. Mathematische Annalen, 261(4):515–534, 1982.

34. V. Leont’ev. Roots of random polynomials over a finite field. Mathematical Notes,
80(1-2):300–304, 2006.

35. M. McLoone, C. McIvor, and J. V. McCanny. Coarsely integrated operand scan-
ning (CIOS) architecture for high-speed Montgomery modular multiplication. In
O. Diessel and J. Williams, editors, Proceedings of the 2004 IEEE International
Conference on Field-Programmable Technology, Brisbane, Australia, December 6-8,
2004, pages 185–191. IEEE, 2004.

36. A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied
Cryptography. CRC Press, October 1996.

25

http://www.google.com/patents/EP2228716A1?cl=en
http://joye.site88.net/papers/JPY01dfa.pdf
http://joye.site88.net/papers/JPY01dfa.pdf
http://joye.site88.net/FAbook.html

37. M. Naehrig, R. Niederhagen, and P. Schwabe. New software speed records for
cryptographic pairings. In M. Abdalla and P. S. Barreto, editors, Progress in
Cryptology – LATINCRYPT 2010, volume 6212 of Lecture Notes in Computer
Science, pages 109–123. Springer-Verlag Berlin Heidelberg, 2010. Updated version:
http://cryptojedi.org/papers/#dclxvi.

38. P. Rauzy and S. Guilley. Countermeasures Against High-Order Fault-Injection
Attacks on CRT-RSA. In Fault Diagnosis and Tolerance in Cryptography (FDTC),
2014 Workshop on, pages 68–82, Sept 2014. Busan, Korea.

39. A. Shamir. Method and apparatus for protecting public key schemes from timing
and fault attacks, November 1999. US Patent Number 5,991,415; also presented at
the rump session of EUROCRYPT ’97 (May 11–15, 1997, Konstanz, Germany).

40. U.S. Department of Commerce, National Institute of Standards and Technology.
Recommended Elliptic Curves For Federal Government Use, July 1999. http:

//csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf.
41. U.S. Department of Commerce, National Institute of Standards and Technol-

ogy. FIPS PUB 186-4, FEDERAL INFORMATION PROCESSING STANDARDS
PUBLICATION: Digital Signature Standard (DSS), July 2013. https://oag.ca.

gov/sites/all/files/agweb/pdfs/erds1/fips_pub_07_2013.pdf.
42. D. Vigilant. RSA with CRT: A New Cost-Effective Solution to Thwart Fault

Attacks. In E. Oswald and P. Rohatgi, editors, CHES, volume 5154 of Lecture
Notes in Computer Science, pages 130–145. Springer, 2008.

43. D. Wagner. Cryptanalysis of a provably secure CRT-RSA algorithm. In V. Atluri,
B. Pfitzmann, and P. D. McDaniel, editors, ACM Conference on Computer and
Communications Security, pages 92–97. ACM, 2004.

A Unprotected CRT-RSA and the BellCoRe Attack

The BellCoRe attack [9] on CRT-RSA (RSA optimized using the Chinese Re-
mainder Theorem) introduced the concept of fault injection attacks. It is very
powerful: faulting the computation even in a very random way yields almost
certainly an exploitable result allowing to recover the secret primes of the RSA
modulus N = pq. Indeed, in the CRT-RSA algorithm, which is described in
Alg. 5, most of the time is spent in the exponentiation algorithm. If the interme-
diate variable Sp (resp. Sq) is returned faulted as Ŝp (resp. Ŝq), then the attacker

gets an erroneous signature Ŝ, and is able to recover q (resp. p) as gcd(N,S− Ŝ).
For any integer x, gcd(N, x) can only be either 1, p, q, or N . In Alg. 5, if Sp is

faulted (i.e., replaced by Ŝp 6= Sp), then S− Ŝ = q · ((iq · (Sp−Sq) mod p)− (iq ·
(Ŝp−Sq) mod p)), and thus gcd(N,S− Ŝ) = q. If Sq is faulted (i.e., replaced by

Ŝq 6= Sq), then S− Ŝ ≡ (Sq − Ŝq)− (q mod p) · iq · (Sq − Ŝq) ≡ 0 mod p because

(q mod p) · iq ≡ 1 mod p, and thus S − Ŝ is a multiple of p. Additionally, the

difference (S − Ŝ) is not a multiple of q. So, gcd(N,S − Ŝ) = p.
Since then, other attacks on CRT-RSA have been found, including as recently

as last year, when Barthe et al. [3] exposed two new families of fault injections
on CRT-RSA: “almost full” linear combinations of p and q, and “almost full”
affine transforms of p or q. Both target intermediate variables of the Mont-
gomery multiplication algorithm (namely Coarsely Integrated Operand Scan-
ning, or CIOS [29,35]) used to implement the exponentiations of the CRT-RSA

26

http://cryptojedi.org/papers/#dclxvi
http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf
https://oag.ca.gov/sites/all/files/agweb/pdfs/erds1/fips_pub_07_2013.pdf
https://oag.ca.gov/sites/all/files/agweb/pdfs/erds1/fips_pub_07_2013.pdf

Input : Message M , key (p, q, dp, dq, iq)
Output : Signature Md mod N

1 Sp = Mdp mod p . Intermediate signature in Zp

2 Sq = Mdq mod q . Intermediate signature in Zq

3 S = CRT(Sp, Sq) . Recombination in ZN

4 return S

Algorithm 5: Unprotected CRT-RSA.

computation, and both leads to attacks based on the Lenstra-Lenstra-Lovász
(LLL) lattice basis reduction algorithm [33].

B Algorithms

B.1 Regular ECSM

The operations on an elliptic curve are point doubling, point addition, and scalar
multiplication which can be built on top of the two first operations. A left-to-
right ECSM is already sketched in Alg. 1. But for our analysis, we need to detail
exactly how it works internally. This is done in Alg. 6, 7, and 8.

Input : Q = (X1 : Y1 : Z1) ∈ E(Zn)
Output : (X : Y : Z) = 2Q ∈ E(Zn)

1 if Q is O then return Q

2 A = 3(X2
1 + 2aZ1(X1 + Z1))

3 X = 2Y1Z1(A2 − 8X1Z1Y
2
1)

4 Y = A(12X1Z1Y
2
1 −A2)− 8Z2

1Y
4
1

5 Z = 8Z3
1Y

3
1

6 return (X : Y : Z)

Algorithm 6: Elliptic curve doubling ECDBL(Q,n).

B.2 Test-Free ECSM

In this section we present the same algorithms, in their test-free variants. Actu-
ally, “test-free” refers to the absence of point comparison (line 1 of Alg. 6, and
lines 1, 2, 3, and 4 of Alg. 7). The test depending on the scalar value (i.e., at
line 4 of Alg. 11) is still present as it will always be satisfied at the same time
in both computations.

27

Input : Q = (X1 : Y1 : Z1), P = (X2 : Y2 : Z2) ∈ E(Zn)
Output : (X : Y : Z) = Q + P ∈ E(Zn)

1 if Q is O then return P
2 if P is O then return Q
3 if Q = −P then return O
4 if Q = P then return ECDBL(Q,n) . See Alg. 6

5 A = Y2Z1 − Y1Z2

6 B = X2Z1 −X1Z2

7 C = Z1Z2A
2 − (X1Z2 + X2Z1)B2

8 X = BC
9 Y = A(X1Z2B

2 − C)− Y1Z2B
3

10 Z = Z1Z2B
3

11 return (X : Y : Z)

Algorithm 7: Elliptic curve addition ECADD(Q,P, n).

Input : P ∈ E(Zn), k > 0
Output : Q = [k]P ∈ E(Zn)

1 Q = O
2 for i = dlog2 ke − 1, . . . , 0 do
3 Q = ECDBL(Q,n) . See Alg. 6. Precondition: Q = [bk/2i+1c]P
4 if ki then Q = ECADD(Q,P, n) . See Alg. 7. Precondition: Q = [2bk/2i+1c]P

5 return Q

Algorithm 8: Elliptic curve scalar multiplication with left-to-right algorithm

ECSML2R(P, k, n).

Input : Q = (X1 : Y1 : Z1) ∈ Z3
n

Output : (X : Y : Z) ∈ Z3
n

1 A = 3(X2
1 + 2aZ1(X1 + Z1))

2 X = 2Y1Z1(A2 − 8X1Z1Y
2
1)

3 Y = A(12X1Z1Y
2
1 −A2)− 8Z2

1Y
4
1

4 Z = 8Z3
1Y

3
1

5 return (X : Y : Z)

Algorithm 9: Test-free elliptic curve doubling TF-ECDBL(Q,n).

28

Input : Q = (X1 : Y1 : Z1), P = (X2 : Y2 : Z2) ∈ Z3
n

Output : (X : Y : Z) ∈ Z3
n

1 A = Y2Z1 − Y1Z2

2 B = X2Z1 −X1Z2

3 C = Z1Z2A
2 − (X1Z2 + X2Z1)B2

4 X = BC
5 Y = A(X1Z2B

2 − C)− Y1Z2B
3

6 Z = Z1Z2B
3

7 return (X : Y : Z)

Algorithm 10: Test-free elliptic curve addition TF-ECADD(Q,P, n).

Input : P ∈ E(Zn), k > 0
Output : Q = (X : Y : Z) ∈ Z3

n

1 Q = O
2 for i = dlog2 ke − 1, . . . , 0 do
3 Q = TF-ECDBL(Q,n)
4 if ki then Q = TF-ECADD(Q,P, n)

5 return Q

Algorithm 11: Test-free elliptic curve scalar multiplication with left-to-right

algorithm TF-ECSML2R(P, k, n).

C TF-Good Scalars for different ECSM Algorithms

We detail in this section the conditions for a scalar to be TF-good for unregular
ECSMs, namely L2R & L2R add-always in Sec. C.1, R2L & R2L add-always
in Sec. C.2, a sliding window “Non-Adjacent Form” in Sec. C.3, and a regular
ECSM, namely the Montgomery ladder in Sec. C.4.

C.1 L2R and L2R add-always [12, §3.1]

The L2R algorithm has already been given in Alg. 8. The conditions for the
scalar k to be TF-good are listed in Definition 6.

The L2R add-always is a more costly variant, protected against simple power
attacks. It is given in Alg. 12.

It can be seen in Alg. 12 that the point Q1 is dummy, hence does not impact
the computation, even if conditional branches are not taken. Hence a TF-good
scalar with respect to left-to-right add-always and left-to-right share the same
conditions.

C.2 R2L and R2L add-always

The R2L ECSM algorithm is described in Alg. 13.
We have the following pre-conditions:

– Q0 = [k mod 2i]P : at line 4 of Alg. 13.

29

Input : P ∈ E(Zn), k > 0
Output : Q = [k]P ∈ E(Zn)

1 Q0 = O
2 Q1 = P . Dummy variable, which can be initialized to whatever value

3 for i = dlog2 ke − 1, . . . , 0 do
4 Q0 = ECDBL(Q0, n) . See Alg. 6

5 Q1−ki = ECADD(Q1−ki , P, n) . See Alg. 7

6 return Q0

Algorithm 12: Elliptic curve scalar multiplication with left-to-right add-always

algorithm ECSML2R-AA(P, k, n).

Input : P ∈ E(Zn), k > 0
Output : Q = [k]P ∈ E(Zn)

1 Q0 = O
2 Q1 = P
3 for i = 0, . . . , dlog2 ke − 1 do
4 if ki then Q0 = ECADD(Q0, Q1, n) . See Alg. 7

5 Q1 = ECDBL(Q1, n) . See Alg. 6

6 return Q0

Algorithm 13: Elliptic curve scalar multiplication with right-to-left algorithm

ECSMR2L(P, k, n).

– Q1 = [2i]P : at line 5 of Alg. 13.

A scalar k is said TF-good using the right-to-left (R2L) ECSM algorithm if
tests in ECADD and ECDBL are not taken.

Regarding ECDBL, this means that input Q1 is not O at each iteration i.
Hence, for all 0 ≤ i < dlog2 ke, ord(P) 6 | 2i.

Regarding ECADD, this means that at every iteration i such that ki = 1:

1. Input Q0 satisfies Q0 is not O, thus ord(P) 6 | k mod 2i.
2. Input Q1 satisfies Q0 is not O, which is already covered by the condition:
∀0 ≤ i < dlog2 ke, ord(P) 6 | 2i.

3. Inputs Q0 and Q1 satisfy Q0 +Q1 is not O, that is:

ord(P) 6 | (2i + (k mod 2i)

⇐⇒ ord(P) 6 | (k mod 2i+1) (recall that by hypothesis, ki = 1)

4. Inputs Q0 and Q1 satisfy Q0−Q1 is not O, i.e., ord(P) 6 | (2i− (k mod 2i).

Thus, a point P is TF-good if all four conditions are satisfied, for all 0 ≤ i <
dlog2 ke:

1. ord(P) 6 | 2i,
2. ord(P) 6 | (k mod 2i) if ki = 1,
3. ord(P) 6 | (k mod 2i+1) if ki = 1,
4. ord(P) 6 | 2i − (k mod 2i) if ki = 1.

30

The right-to-left add-always ECSM is similar to Alg. 13, except that a dummy
point is added to balance the branch depending on ki bits. Thus, the notion of
TF-good point for R2L and R2L-add-always is the same.

C.3 Left-to-Right sliding window NAF scalar multiplication

A non-adjacent form (NAF) of a positive integer k is an expression k =
∑l−1

i=0 ki2
i

where ki ∈ {−1, 0, 1}, kl−1 6= 0, and no two consecutive digits ki are nonzero.
The length of the NAF is l.

Theorem 2 ([21, Theorem 3.29]). Let k be a positive integer.

– k has a unique NAF denoted NAF(k) or (kl−1, . . . , k0)NAF.
– NAF(k) has the fewest nonzero digits of any signed digit representation of
k.

– l is at most one more than the length of the binary representation of k.
– The average density of nonzero digits among all NAFs of length n is approx-

imatively 1/3.

We recall the L2R sliding window NAF scalar multiplication in Alg. C.4.
It is hard to provide a closed form expression to decide whether a scalar k

is good or bad with respect to the multiplication of a point P by k with ECSM
algorithm L2R wNAF. However, such test can be implemented as an algorithm
(see Alg. 15).

The idea behind Alg. 15 is to test the conditions for the test-free version of
ECADD and ECDBL to work.

In Alg. 14, the code between lines 1 and 4 precomputes [i]P for i = 3, 5, . . . ,m.
It can easily be checked that the conditions are enumerated as follows:

– At line 2, ord(P) 6= 1;
– At line 4, P ′ is not O, [i− 4]P, [i− 2]P, [i]P is not O (for i = 3, 5, . . . ,m).

This is clearly equivalent to have the test implemented at line 4 of Alg. 15.
Then, at line 9 of Alg. 14, the ECDBL calls no test provided the point

Q = [(kl−1, . . . , ki+1)NAF]P to be doubled is not O. This is reflected at line 9 of
Alg. 15.

The ECDBL at line 17 has a test similar to that at line 9. The presence
of test can be tested by the check at line 16 of Alg. 15. In this test, the no-
tation 2j(kl−1, . . . , ki+1)NAF is short for (kl−1, . . . , ki+1, 0, . . . , 0︸ ︷︷ ︸

j zeros

)NAF. Actually,

the index j goes up to i − s + 1, because this last test is required by the next
instructions.

Between lines 18 and 21 of Alg. 14, one ECADD is computed. Notice that
it is either an addition or a subtraction. But the tests are the same in Q ± Pu,
namely Q,±Pu, Q± Pu, Q∓ Pu is O. One needs to check that:

– Pu is not O, which has already been done at line 4 of Alg. 15.
– Q is not O, which is the test for j = i− s+ 1 at line 16 of Alg. 15.

31

Input : P ∈ E(Zn), w ≥ 2, k = (kl−1, . . . , k0)NAF

Output : Q = [k]P ∈ E(Zn)

1 m← 2(2w − (−1)w)/3− 1
2 P ′ ← ECDBL(P, n) . See Alg. 6

3 for i = 3 to m by 2 do
4 Pi ← ECADD(Pi−1, P

′) . See Alg. 7

5 Q← P
6 i← l − 2
7 while i ≥ 0 do
8 if ki = 0 then
9 Q = ECDBL(Q,n) . See Alg. 6

10 i← i− 1

11 else
12 s← max(i− w + 1, 0)
13 while ks = 0 do
14 s← s + 1
15 u← (ki, . . . , ks)NAF

16 for j = 1 to i− s + 1 do
17 Q← ECDBL(Q,n) . See Alg. 6

18 if u > 0 then
19 Q← ECADD(Q,Pu, n) . See Alg. 7

20 if u < 0 then
21 Q← ECADD(Q,−P−u, n) . See Alg. 7

22 i← s− 1

23 return Q

Algorithm 14: Elliptic curve scalar multiplication with left-to-right sliding

window NAF algorithm ECSML2R wNAF(P, k, n).

32

Input : P ∈ E(Zn), w ≥ 2, k = (kl−1, . . . , k0)NAF

Output : True if k is TF-good, or False otherwise

1 m← 2(2w − (−1)w)/3− 1
2 P ′ ← ECDBL(P, n) . See Alg. 6

3 for i = 3 to m by 2 do
4 if ord(P) | i then return False

5 Q← P
6 i← l − 2
7 while i ≥ 0 do
8 if ki = 0 then
9 if ord(P) | (kl−1, . . . , ki+1)NAF then return False

10 i← i− 1

11 else
12 s← max(i− w + 1, 0)
13 while ks = 0 do
14 s← s + 1
15 for j = 0 to i− s + 1 do
16 if ord(P) | 2j(kl−1, . . . , ki+1)NAF then return False
17 if ord(P) | (kl−1, . . . , ki+1,±ki, . . . ,±ks)NAF then return False
18 i← s− 1

19 return True

Algorithm 15: Test whether a scalar k is TF-good or TF-bad with respect

to the ECSM of a point P using the left-to-right sliding window NAF algorithm

ECSML2R wNAF.

33

– As already mentioned, checking an addition or a subtraction imply the same
tests, which can be summarized as: ord(P) | 2i−s+1(kl−1, . . . , ki+1)NAF +
±(ki, . . . , ks)NAF, as is tested at line 17 of Alg. 15.

C.4 Montgomery Powering Ladder

The Montgomery powering ladder is a regular ECSM, described in Alg. 16.

Input : P ∈ E(Zn), k > 0
Output : Q = [k]P ∈ E(Zn)

1 Q0 = O
2 Q1 = P
3 for i = dlog2 ke − 1, . . . , 0 do
4 Q1−ki = ECADD(Q0, Q1, n) . See Alg. 7

5 Qki = ECDBL(Qki , n) . See Alg. 6

6 return Q0

Algorithm 16: Elliptic curve scalar multiplication with Montgomery powering

ladder algorithm ECSMMont(P, k, n).

We have the following pre-conditions:

– Q0 = [bk/2i+1c]P and Q1 = [bk/2i+1c+ 1]P : at line 4 of Alg. 16.
– Qki

= [bk/2i+1c+ ki]P : at line 5 of Alg. 16.

A scalar k is said TF-good using the Montgomery powering ladder algorithm
if tests in ECADD and ECDBL are not taken.

Regarding ECADD, this means that at every iteration i such that dlog2 ke >
i ≥ 0:

1. Input Q0 satisfies Q0 is not O, thus ord(P) 6 | bk/2i+1c.
2. Input Q1 satisfies Q1 is not O, thus ord(P) 6 | bk/2i+1c+ 1.
3. Inputs Q0 and Q1 satisfy Q0 6= −Q1, i.e., Q0 +Q1 = [2bk/2i+1c+ 1]P is not
O, thus ord(P) 6 | 2bk/2i+1c+ 1. But,

2bk/2i+1c+ 1 =

{
bk/2ic+ 1 if ki = 0,

bk/2ic if ki = 1,

hence this condition is already covered by the first two ones.
4. Inputs Q0 and Q1 satisfy Q0 6= Q1. In Montgomery powering ladder, Q1 −
Q0 = P at every iteration i, thus we must have P 6= O, i.e., ord(P) 6= 1,
which is also already covered by the two first conditions.

Regarding ECDBL, this means that input Qki
is not O at each iteration i.

This is equivalent to ord(P) 6 | bk/2i+1c + ki, which is also already covered by
the two first conditions of ECADD.

So, to summarize, a scalar is TF-good when used in conjunction with a
Montgomery powering ladder if, for all i such that dlog2 ke > i ≥ 0:

1. ord(P) 6 | bk/2i+1c, and
2. ord(P) 6 | bk/2i+1c+ 1.

34

D Details on the Existing Countermeasures

D.1 BOS Combined Curve and Point

Here we detail the computation behind line 2 of Alg. 2. For the combined curve
E(Zpr) (we denote An and Bn the equation parameters of the curve on Zn):
– Apr = CRT(Ap, Ar),
– Bpr = CRT(Bp, Br).

For the point Ppr:
– Xpr = CRT(Xp, Xr),
– Ypr = CRT(Yp, Yr),
– Zpr = CRT(Zp, Zr).

Here, CRT(Ua, Ub) denotes the CRT recombination in Zab of Ua ∈ Fa and Ub ∈
Fb.

It is possible to avoid these computations by choosing Ur = Up mod r in
order to have Upr = Up for all the variables listed above. However, it will be
less secure than choosing security-optimized Ur values. Indeed, recall comments
made about Tab. 1.

D.2 BOS Numerical Example of Incorrect Result

Here we give a toy example for which BOS returns an incorrect result. We chose
an unrealistic, very small r as it allows to verify the computations quickly.

The nominal elliptic curve E(Fp) (P-192) has the following parameters:

p = 0xfffffffffffffffffffffffffffffffeffffffffffffffff,

A = p− 3,

B = 0x64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1,

xP = 0x188da80eb03090f67cbf20eb43a18800f4ff0afd82ff1012,

yP = 0x07192b95ffc8da78631011ed6b24cdd573f977a11e794811.

The small curve E(Fr):

r = 0x7,

Ar = 0x4,

Br = 0x1,

xPr
= 0x6,

yPr
= 0x4.

The combined curve E(Zpr) obtained as explained in Sec. D.1:

pr = 0x6fffffffffffffffffffffffffffffff8fffffffffffffff9,

Apr = 0x6fffffffffffffffffffffffffffffff8fffffffffffffff6,

Bpr = 0x264210519e59c80e70fa7e9ab72243047feb8deecc146b9af,

xPpr
= 0x3188da80eb03090f67cbf20eb43a187fdf4ff0afd82ff100f,

yPpr
= 0x307192b95ffc8da78631011ed6b24cdd273f977a11e79480e.

35

Given these parameters, Alg. 2 is correct for all k such that 0 < k ≤ 8.
Actually, Pr = (xPr

: yPr
: 1) is a point of order 8 on E(Fr), hence [8]Pr = O.

However, the results start to be incorrect when k > 8. For example:
– [9]P on E(Fp) is equal to

(0x818a4d308b1cabb74e9e8f2ba8d27c9e1d9d375ab980388f,

0x1d1aa5e208d87cd7c292f7cbb457cdf30ea542176c8e739),

and no conditional tests are satisfied during the computation.
– Q = [9]Pr on E(Fr) is equal to (0x6, 0x4), and one conditional test is satis-

fied, namely Q is O (line 1 of Alg. 6).
– [9]Ppr on E(Zpr) is equal to

(0x3818a4d308b1cabb74e9e8f2ba8d27c9b1d9d375ab980388c,

0x401d1aa5e208d87cd7c292f7cbb457cdb30ea542176c8e735),

which matches [9]P on E(Fp) modulo p, but is equal to (0x0, 0x0) 6= (0x6, 0x4)
modulo r.

As a result, error will be returned while no error nor fault attacks actually oc-
curred.

D.3 BV Combined Curve and Point

Here we detail the computation behind line 2 of Alg. 3.
In their paper [2], Baek and Vasyltsov use the following curve equation (in

Jacobian projective coordinate) for the curve E(Fp): Y 2Z = X3+AXZ4+BZ6.
To obtain the combined curve E′(Zpr), a value B′ is computed first: B′ = y2 +
py−x3−ax mod pr, where (x : y : 1) are the Jacobian projective coordinates of
P . Then, the equation of the curve E′(Zpr) is: Y 2Z+pY Z3 = X3+AXZ4+B′Z6.

Notice that the check at line 4 of Alg. 3 is based on this Jacobian projective
coordinate equation11, only taken modulo r.

The same point P is used.

E Complexity of Modular Inverse in Direct Product

The modular inverse of a number can be efficiently obtained thanks to an ex-
tended Euclid algorithm [36, Algorithm 2.107 at §2.4, p. 67]. The complexity of
this algorithm is quadratic in the size in bits of the modulo (i.e., it is O(log2(p))
when the ring is Zp), like the modular multiplication (see [36, Table 2.8 in
Chap. 2, page 84]). However, in practice, for moduli of cryptographic size (i.e.,
192 ≤ log2(p) ≤ 521 for ECC, see [40]) the duration of a division lasts from 4 to
10 times the duration of a multiplication12.

11 In the original paper [2], there is a typo in Alg. 2 and the equation reads Y 2+pY Z3 =
X3 + AXZ4 + B′Z6, missing a Z.

12 As benchmarked by OpenSSL version 1.0.1f BN mod mul and BN mod inverse func-
tions.

36

Prop. 6 shows that divisions can also be implemented efficiently in Zpr, pro-
vided the division exists. If not, an exponentiation z 7→ zp−2 is necessary. As-
suming that the binary representation of p consists of as many ones as zeros
and that the exponentiation is done with a double-and-add algorithm, the cost
of z 7→ zp−2 is about 3

2blog2 pc, that is 288 multiplications when p is a 192-bit
prime number.

However, multiples of r occur only with probability 1
r in computations. Thus,

an upper-bound for the expected overhead is (10×(1− 1
r)+384× 1

r)/10 ≈ 1+10−8

when r is a 32 bit number, which is negligible in practice.

F Theoretical Upper-Bound for #roots

It is interesting to study the theoretical upper bound on the number of roots in
practical cases. Leont’ev proved in [34] that if P is a random polynomial in Fp

then #roots(P) ∼ Poisson(λ = 1), i.e., P(#roots(P) = k) = 1
ek! . In the case of

∆P mod r, we know that there is always at least one root, when x̂1 = x1, so
we can rewrite ∆P (x̂1) = P (x̂1)− P (x1) = R(x̂1) · a(x̂1 − x1), where a is some
constant, and R is indeed a random polynomial of degree r − 2, owing to the
modular reduction of ∆P by r. So we know that #roots(∆P) = 1 + #roots(R),
hence P(#roots(∆P) = k) = P(#roots(R) = k − 1), which is 0 if k = 0 and

1
e(k−1)! otherwise. We want the maximum value of k which has a “plausible”

probability, let us say that is 2−p, e.g., 2−256. Since the values of a Poisson
distribution of parameter λ = 1 are decreasing, we are looking for k such that:
P(#roots(R) = k − 1) = 1

e(k−1)! ≤ 2−256. This would suggest that k & 58.

This result means that Pn.d. is predicted to be at most 57
r , with r being

at least a 32-bit number, i.e., that Pn.d. is at maximum ≈ 2−26, and that this
worst-case scenario has a probability of ≈ 2−256 of happening, in theory.

Remark 3. Note that we do not take into account the probability of TF-bad k.
However, the probability of k being TF-bad can be bounded with respect to a
point P ∈ E(Fr), as explained in Prop. 5 (Sec. 5.2).

 0

 0.1

 0.2

 0.3

 0.4

 0 1 2 3 4 5 6 7 8

P
ro

b
a
b
ili

ty

#roots

Poisson(1)
k = 3

 0

 0.1

 0.2

 0.3

 0.4

 0 1 2 3 4 5 6 7 8

P
ro

b
a
b
ili

ty

#roots

Poisson(1)
k = 15

Fig. 4: #roots probability for ECSM [k]G.

Fig. 4 shows typical number of roots (obtained with SAGE) for practical
cases in ECC, and compare them to the theoretical predictions. In this figure,

37

we chose values of k of the form 2j−1, which maximize the number of operations,
and thus the size and degree of the resulting ∆P polynomials. For each value of
k, we expressed the polynomial ∆P corresponding to the ECSM [k]G, and did
so for a thousand random G. We then plotted for i = 0 to 8 the number of [k]G
for which #roots(∆P) = i+1 divided by 1000, that is the estimated probability

P̂(#roots(∆P) = i+ 1). Let us denote by Z the Boolean random variable which
is equal to one if ∆P has a (i+ 1) roots, and zero otherwise. Our estimation of

P̂(#roots(∆P) = i + 1) is thus the expectation of 1
1000

∑1000
j=1 Zj . This random

variable follows a binomial distribution, of mean p = P(#roots(∆P) = i + 1)
and variance p(1 − p)/1000. The later values are used for the error bars ([p −√
p(1− p)/1000, p+

√
p(1− p)/1000]).

The two graphs in Fig. 4 correspond to two corner-cases:
1. k = 3 = (11)2: the number of roots is small because the polynomial degree

is small (it is 13). (recall that #roots(P) cannot exceed the degree of P).
2. k = 15 = (1111)2: the number of roots is also small, but this times because

the result of Leont’ev applies. Indeed, the degree is 7213, thus the polynomial
is much more random-looking.

Fig. 5: Degree of the polynomial ∆P against the value of k (in log-log scale).

Actually, it is computationally hard to count the roots of polynomials of de-
gree greater than 7213. But it can be checked that the degree of the polynomials
is growing exponentially with k. This is represented in Fig. 5, where we see that
the degree is about equal to k3.25 (of course, when k has a large Hamming weight,
as in (11 . . . 1)2, the degree is larger than when k is hollow, as in (10 . . . 0)2). In
particular, the polynomial ∆P reaches degree 232 (resp. 264) when k has about
10 (resp. 18) bits. Thus, modulo r (recall Eqn. (1)), the polynomial ∆P has max-
imal degree as long as the fault is injected before the last 10 (resp. 18) elliptic
curve operations when r fits on 32 bits (resp. 64 bits).

G Examples of Pn.d.

Example 1 (Pn.d. for CRT-RSA). From Thm. 1’s proof, we can derive that for
proven CRT-RSA countermeasures such as [1,42,38], we have Pn.d. = 1

r .
Indeed, in CRT-RSA, the computation mainly consists of two exponentiations.
In an exponentiation, ∆P takes on the form m̂k ·md−k−md = (m̂k−mk) ·md−k.
Assuming the message m 6= 0, we have #roots(∆P) = 1 (that is m̂ = m mod r),

38

hence a non-detection probability of 1
r (in the case RSA is computed with CRT).

Otherwise, after the Garner recombination [17] ∆P is of the form mdq + q · (iq ·
(mdp−km̂k−mdq) mod p)−mdq +q ·(iq ·(mdp−mdq) mod p) = q ·(iq ·(mdp−km̂k−
mdp)), if the fault is on the p part; ormdq−km̂k+q·(iq ·(mdp−mdq−km̂k) mod p)−
mdq +q ·(iq ·(mdp−mdq) mod p) = (mdq−km̂k−mdq)+q ·(iq ·(mdq−km̂k−mdq)),
if it is on the q part.
We conclude that #roots(∆P) is still 1 in both cases and thus that Pn.d. = 1

r .

It can be noticed that this result had been used in most previous articles
dealing with fault protection on CRT-RSA without being formally proved. So,
we now formally confirm those results were indeed correct.

Example 2 (Fault non-detection probability greater than 1
r). Let us assume the

computation P (a, b, c) = (a + b) · (b + c). If a single fault strikes b, then the

polynomial ∆P is equal to P (a, b̂, c) − P (a, b, c) mod r. Its degree is equal to
2, and has 2 distinct roots provided b 6= −(a + c)/2 mod r, or 1 double root
otherwise. Thus, in the general case where the nominal inputs satisfy b 6= −(a+
c)/2 mod r (which occurs also with probability 1

r), the non-detection probability

is 2
r . Namely, the 2p−1 values of b̂ ∈ Zpr causing an undetected fault are b+kr,

with k ∈ {1, . . . , p− 1}, and −(a+ c)/2 + lr, with l ∈ {0, . . . , p− 1}.

39

