

Licence informatique & vidéoludisme Semestre 1

Méthodologie de la programmation

Chapitre 5 Production de documents avec LATEX

Pablo Rauzy <pr@up8.edu>
pablo.rauzy.name/teaching/mp

Production de documents avec LATEX

- TEX a été créé à partir de 1977 par Donald Knuth.
- Il n'en pouvait plus de la qualité médiocre de la typographie à l'époque.
- Depuis la version 3, il est stabilisé, les nouvelles versions ne font que corriger des bugs et sont numérotées en rajoutant des décimales de π.
- La version actuelle est numérotée 3.14159265.

- ► LATEX est une "surcouche" de TEX (un ensemble de macros) qui facilite son utilisation, écrite par Leslie Lamport.
- C'est un logiciel très répandu, notamment dans le monde technique et scientifique.

- ▶ L⁴TEX est un langage compilé, généralement pour produire du PDF.
- Le processus de compilation n'est pas forcément simple, mais il est aujourd'hui pris en charge par des outils qui l'automatise en grande partie.

- rubber et latexmk sont des scripts en ligne de commande qui prennent en charge la compilation de document I⁴TEX.
- Ils sont très simples d'utilisation.
- Vous pouvez donc éditer vos fichiers L⁴TEX dans l'éditeur de votre choix et ensuite faire appel à eux.

- ▶ Une autre approche possible est celle des environnements de développement intégrés.
- TeXworks et Texmaker vous servent d'éditeur, gèrent la compilation, et l'affichage du résultat, et bien d'autres choses.
- Ils offrent aussi de l'aide à l'écriture de code.
- Ces deux IDE sont libres et disponibles sur toutes les plateformes.

La structure d'un fichier LATEX est la suivante :

```
documentclass{article}

% en-tête (déclaration de packages, configuration, etc)

\usepackage[utf8x]{inputenc}
\usepackage[french]{babel}

author{Nom de l'auteur}
\utile{Titre du document}
\uditae{Date de rédaction}

\usepackage[document]
\undersette \un
```

- Dans l'entête on déclare principalement des packages avec la commande **\usepackage**.
- Les packages servent à ajouter des fonctionnalités.
- Les commentaires commencent par %.

- ► Il existe différentes classes de documents.
- Les plus courantes sont: article, report, book, beamer, et minimal.
- Il est possible de créer ses propres classes (c'est ce que font la plupart des éditeurs scientifiques pour les articles de leurs journaux).

Les commandes de mises en formes simples sont les suivantes :

```
1 \textbf{Texte en gras}
2
3 \textit{Texte en italique}
4
5 \textit{Texte en monospace}
6
7 \textsf{Texte en sans sérif}
8
9 \textsc{Texte en petites majuscules}
11 \underline{Texte souligné}
```

▶ Pour utiliser des couleurs peut charger le package xcolor

```
1 \usepackage{xcolor}
2
3 \colorbox{red!50!yellow}{
4  \textcolor{white}{\textbf{gras blanc surligné en orange}}}
5 }
```

▶ Il est possible de spécifier des tailles de police arbitraires, mais le mieux pour la cohérence est d'utiliser les macros déjà définies par la documentclass :

```
{\Huge Huge}
   {\huge huge}
   {\LARGE LARGE}
   {\Large Large}
   {\large large}
   {\small small}
   {\footnotesize footnotesize}
14
   {\scriptsize scriptsize}
16
   {\tiny tiny}
```

- Un document est organisé en sections de différents niveaux.
- Leur existence dépend de la documentclass.
- Les niveaux les plus courants sont :
 - les chapitres, avec la commande \chapter (avec les documentclass book et report)
 - les sections, avec la commande \section,
 - les sous sections avec la commande \subsection,
 - les sous sous sections avec la commande \subsubsection,
 - les paragraphes, avec la commande \paragraph.

La commande **\tableofcontents** permet de générer automatiquement une table des matières.

Autres fonctionnalités

- Nous allons maintenant voir :
 - les listes,
 - les notes de bas de page,
 - les références,
 - les images,
 - les figures,
 - les formules,
 - le code,
 - les liens.

- Les listes à puces sont créées avec l'environnement itemize.
- À l'intérieur de cette environnement, les éléments de la liste sont créés avec la commande \item.
- Les listes numérotés fonctionnent de la même manière mais avec l'environnement enumerate.
 - \begin{itemize}
 - 2 \item Une liste à puce.
- 3 \item Tout à fait standard.
- 4 \end{itemize}
- 5 \begin{enumerate}
- 6 \item Une liste numéroté.
- 7 \item Un second élément.
- 8 \item Un troisième.
- 9 \end{enumerate}

▶ On peut mettre des notes de bas de pages avec la commande \footnote.

Qui dit sûrement des choses aussi\footnote{Enfin, admettons....}

- Une autre chose très pratiques sont les labels et références.
- Ils permettent de référencer des sections, des pages, des éléments de listes... et de ne pas avoir à se soucier de la validité du numéro.

```
1 \section{Mises en forme simples}
2 \label{sec:mise-en-forme}
3
4 \section{Une troisième section}
5
6 Remettons du \textbf{gras} comme on l'a vu dans la section
7 \ref{sec:mise-en-forme} intitulée ``\nameref{sec:mise-en-forme}''
8 à la page \pageref{sec:mise-en-forme}.
```

On peut insérer des images avec la commande \includegraphics, qui nécessite le package graphicx.

- 1 \usepackage{graphicx}
- 2 \includegraphics[width=5cm,angle=10]{p8.pdf}

- ► LaTeX propose la notion de *flottant*.
- Un flottant est un élément qui a un type et un numéro qui l'identifie uniquement (figure, table, code source...).
- ▶ Du coup, IATEX se permets de les positionner aux endroits qui l'arrange pour optimiser la présentation du document.

```
1 \begin{figure}
2 \centering
3 \includegraphics[width=5cm,angle=10]{p8.pdf}
4 \caption{Le logo de Paris 8 incliné de 10$^o$. \label{fig:p8}}
5 \end{figure}
```

- ▶ L⁴TEX propose un langage très puissant pour écrire des maths.
- Cette notation a été reprise par la plupart des logiciels nécessitants la mise en forme de formules mathématiques.
- ▶ On écrit les formules soit en ligne entre des \$, soit en bloc entre \[et \].

```
1 On peut mettre des maths directement au milieu d'une phrase
2 $(a+b)^2 = a^2 + 2ab + b^2$ mais il est aussi possible de séparer
3 les formules un peu plus imposantes du texte en les mettant sur
4 leur propre ligne comme ça :
5 \[
    \sqrt{|xy|}\left|\frac{x+y}{2}\right|}
```

▶ Le package listings permet de mettre du code dans le document.

```
1 \usepackage{listings}
2
3 \undersigned begin{lstlisting}[language=python]
4 import foo
5 if True:
6 do_something()
7 print("coucou")
8 \undersigned begin{lstlisting}
6 \undersigned begin{lstlisting}
7 \undersigned begin{lstlisting}
8 \undersigned begin{lstlistlisting}
8 \undersigned begin{lstlisting}
8 \undersigned begin{
```

Avec le package url on peut mettre des url, et hyperref permet de mettre des liens externe et interne au PDF (automatique sur la table des matières et les références).

```
2 \usepackage[hidelinks]{hyperref}
3
4 \url{https://pablo.rauzy.name/}
5 \href{https://pablo.rauzy.name/}{Pablo Rauzy}
```

\usepackage{url}

► Le wikibook sur LAT_EX : https://en.wikibooks.org/wiki/LaTeX