
Research Internship Report

with the Synchron team at the Verimag lab, during June and July 2010,

supervised by Christophe Rippert, Karin Altisen and Kévin Marquet.

A formal approach to the development of system services in
embedded systems: from model to implementation.

Pablo Rauzy

Computer Science Department — École Normale Supérieure

September 19, 2010

Abstract

Our goal is to enable preemptive multitasking in critical embedded systems

programmed with the formally defined Lustre programming language, in order

to get rid of the constraints imposed by static scheduling, which is still in use

at this day. We aim to do so by introducing a tiny system layer between the

hardware and the software, which would also be written as much as possible in

Lustre to allow global validation of the system using formal verification methods.

Contents
1 Introduction 4

1.1 The Synchronous team at Verimag . 4
1.2 Critical systems and synchronous languages 4
1.3 Issues and goals . 5

2 Propositions 6
2.1 The Lustre programming language . 6
2.2 The need for a system layer and propositions 8

3 Designing a preemptive kernel 9
3.1 Choosing the right platform . 9
3.2 Lustre process . 10
3.3 Context switching . 11
3.4 Preemptive scheduling of periodic tasks . 12
3.5 Sporadic tasks . 13
3.6 Inter-process communications . 13

4 Writing system components in Lustre 16
4.1 Which components? . 16
4.2 Periodic tasks clock in Lustre . 16
4.3 Selection of the next running task in Lustre 17

5 Model checking 19
5.1 Boolean property checking . 19
5.2 Program verification . 20

6 Conclusion and perspectives 20
6.1 Automatic generation toolchain . 20
6.2 Remaining verification work . 21
6.3 Remaining work on the Lego NXT . 21
6.4 Conclusion . 21

2

Thanks

First, I would like to thank Christophe Rippert, Karin Altisen and Kévin
Marquet, for providing such a great internship subject, advising me so well
and being available during my internship and even after.

Second, I’d like to give special thanks to Damien Vergnaud, who took care
of many internship-related administrative tasks for us.

During my internship I met with Florent Capelli and Martin Bodin, students
at the ENS Lyon who were also doing an internship at Verimag and with who
we sympathized, I’d like to thank them for all the good moments and funny
discussion we had. I’d like to make the same kind of thank to Nicolas Berthier,
PhD student at Verimag and also LATEX-guru. I’d also want to thank Pascal
Raymond for being this much available for me and all of my “how”s and
“why”s about Lustre language and tools.

Finally I’d like to thank every person I met at Verimag, either at lunch, during
the coffee break, or even around the Libération or Le Canard Enchâıné cross-
words... I really enjoyed meeting them and discussing with all of them.

3

1 Introduction

1.1 The Synchronous team at Verimag

The “Synchronous” team of the Verimag laboratory proposed more than 20 years
ago the formally defined synchronous language Lustre, for the development of
critical control software. Since then, Lustre has evolved and is now used in the
industry with-in the SCADE tool, provided by Esterel Technologies. Notable
users are Airbus, Schneider Electric, and Eurocopter, for instance.

During the last decade, the activities of the group have been extended outside
the strict scope of synchronous languages and control systems, to cover most
aspects of embedded system design, implementation and validation. This work
has mostly been done with the development of Lustre.

1.2 Critical systems and synchronous languages

Software development targeting critical embedded systems requires the use of
reliable methods, based on formal models allowing automatic validation of pro-
grams.

In order to reach maximum speed and to avoid having non-verified parts, these
software usually runs on the bare metal, without any layer between the hardware
and the software.

The followings are some of the properties programming languages used in crit-
ical system development may have.

To be formally defined for a programming language means that its semantic is
defined and imposed by the definition of the language, this ensure the possibility
of reasoning about the execution of programs. Example of formally defined
languages are SPARK and Lustre.

A programming language is said declarative if it tries to express the logic of a
computation without explicitly describing its control flow but rather expressing
correlations between states of the system. The attempt is to minimize or elimi-
nate side effects by describing what the program should accomplish, rather than
describing how to go about accomplishing it. Example of declarative languages
are Prolog, CSS, XSLT and Lustre.

A synchronous language is one of which the execution of the program is punc-
tuated by a clock: every variables values are computed “simultaneously” at each
clock tick. This is an advantage for programming reactive systems, which are

4

often interrupted and must respond quickly. Example of synchronous languages
are Esterel, Signal and Lustre.

The dataflow approach models programs as directed graphs of the data flowing
between operations. Example of dataflow languages are Simulink, Lucid, Verilog,
Max/Msp and Lustre.

In Lustre, the control flow is obtained by solving constraints imposed by equa-
tions expressing transitions between the system states (declarative), these tran-
sitions are computed “simultaneously” for all variables (synchronous), and pro-
grams can be seen as automata that we can study in order to make verifications
about certain kind of properties (dataflow).

“Lustre is a formally defined, declarative, and synchronous dataflow
programming language, for programming real-time systems.”

But even with those properties, Lustre currently has some limitations that we
would like to overcome...

1.3 Issues and goals

With the development of technologies, electronic components and embedded
systems spread everywhere. This create the need to run multiple programs on
the same chip, in order to avoid multiplication of physical components and the
growing complexity of their interconnection.

As of now, Lustre allow concurrent programming in an entirely deterministic
way, using a static scheduling of tasks computed at compile time. This implies
several limitations: for instance this way of multitasking is not preemptive which
means that it’s not able to handle sporadic tasks such as unpredictable events
or emergency procedures whose execution time is unknown during the system
conception. Furthermore, these kind of features are commonly needed in real-
time systems.

Those constatations advocate for the introduction of some minimalist system
services to handle the implementation of additional features, such as dynamic
preemptive scheduling, while still being able to run verification and guarantee
the semantics and the validity of programs.

All this led to the purpose of my intership: the design and implementation of
the said “tiny system layer”.

5

h
ig

h
 l
e
v
e
l

sy
st

e
m

le

v
e
l

 high level
system components

preemptively scheduled Lustre tasks

Scheduler Communication

Drivers

Figure 1: Schematic views of what the overall system should look like.

2 Propositions

Before going any further, lets study Lustre from a closer point of view.

2.1 The Lustre programming language

One of the important notions in Lustre is the time. Any variable and expression
denotes a flow, which is a pair of a possibly infinite sequence of values of a given
type, and a clock representing a sequence of times.

Any program, or piece of program, written in Lustre as a cyclic behavior, and
that cycle defines a sequence of times which is called the basic clock of the
program.

Programs are organized in nodes which contain equations (in the mathematical
sense). These equations contain variables of either primitive types (bool, inte-
ger, real and tuples) or user-defined types, and use a set of primitive operators
(boolean: and, or, not, xor ; relational: =, <, <=, >, >= ; arithmetic: +, -, *,
/, div, mod ; conditional: if then else).

In addition to those, there are four other operators:

• pre which act as a memory. Think of a physical register but for any type
of value. The sequence of values of the pre E flow is (nil, e1, e2, ...) when
(e1, e2, ...) is the sequence of values of the flow E.

• -> (“followed by”) is a binary operator that given two flows E (e1, e2, ...)
and F (f1, f2, ...) gives a flow E -> F (e1, f2, f3, ...).

6

• when is used to create slower clock based on a boolean flow. E when B

is the flow whose clock tick when B is true and whose values are those of
E at these times.

• current is used to get the current value (the value computed at the last
clock tick of the flow) of a flow with a slower clock.

This table clarify the behavior of the last two operators:

E 1 2 3 4 5 6 7 8
B false false true false true false false true

A = E when B 3 5 8
current A nil nil 3 3 5 5 5 8

The code 1 is an example of Lustre code.

Code 1:
node c o u n t e r (i n i t , i n c r : i n t ; r e s e t : b o o l)

r e t u r n s (n : i n t) ;
l e t

n = i n i t −> i f r e s e t then i n i t e l s e p r e (n) + i n c r ;
t e l

node dummy (r e s t a r t : b o o l)
r e t u r n s (d : i n t) ;

v a r a : i n t ;
l e t

a = 0 −> p r e (a) + 1 ;
d = c o u n t e r (p r e (a) , d , r e s t a r t) ;

t e l

In addition to that, Lustre also has support for arrays and recursive nodes
as syntactic sugar. The compiler expands arrays into as many variables as they
have elements and unfolds recursive nodes into regular nodes. As a consequence,
arrays size and index must be known at compile time, as well as the parameters
controlling the recursion.

Arrays are typed by type^size, and recursion is controlled by the with operator,
which acts like if but the condition must be computable at compile time. An
example of recursive node is presented in code 2.

Code 2:
node g e t a r r a y i t e m (c o n s t s i z e : i n t ; a r r a y : i n t ˆ s i z e ; i n d e x : i n t)

r e t u r n s (i tem : i n t) ;
l e t

i tem = i f i n d e x = 0 then a r r a y [0]
e l s e w i t h s i z e = 1 then −1

7

e l s e g e t a r r a y i t e m (s i z e − 1 , a r r a y [1 . . s i z e − 1] ,
i n d e x − 1) ;

t e l

Besides equations, Lustre programs may contain assertions which are boolean
expressions that should always be true. Their primary use is optimization infor-
mations for the compiler, but they are also used by verification tools.

Lustre compilation process is certified to be valid, which means that the devel-
opment process of the compiler obeys certain rules.

Lustre compiler generate a single finite state automata, that it encodes in the
C programming language for efficiency. For the same reason the generated code
runs on bare metal, without any layer in between.

The general form of the compiled code is as follow :

f o r e v e r do :
r e a d i n p u t s
c o m p u t a t i o n s
update memories
emit o u t p u t s

Where computations is a transition to the next state in the automata, which
means that a step of each equations of the program is solved.

2.2 The need for a system layer and propositions

With the development of technologies, electronic components and embedded sys-
tems spread everywhere. Moreover, everywhere real-time systems are in use, we
need, or at least want, them to do increasingly many things. It is not uncommon
for a newly designed car to have more than a hundred processing units in the
basic model.

This obviously create the need to run multiple programs on the same chip, in
order to avoid multiplication of physical components and the growing complexity
of their interconnection.

Currently, Lustre allow concurrent programming in an entirely deterministic
way, using a static scheduling of tasks at compile time, which is moreover done
manually.

This causes several limitations, this way of multitasking can’t handle events
or emergency procedures. A real-time system could need to able to trigger
emergency break at any time for instance. This kind of need is very common
as we can imagine in critical embedded systems, but it is still needed to have a

8

program running on a separate chip dedicated to this task. In our quest to run
as many thing as possible on a single chip this is a strong curb.

In order to solve this issue, we need dynamic and preemptive multitasking.

Preemption, by opposition to cooperation, is the act of temporarily interrupting
a task without requiring its cooperation, and with the intention of resuming the
task at a later time. Such a change is known as a context switch.

Preemptive scheduling thus require an external agent to make the context
switches when necessary, hence we need a low-level layer between our programs
and the hardware responsible for that.

Once the idea is here, the first thought is to just use the Linux kernel as many
embedded devices do. The problem is that in our context, critical real-time
system, we need reliable, formally validated software.

Plus, we have one more specificity here: classic scheduler as we can found in
the Linux kernel are designed for endless process that just need to share CPU
time. But what we have is periodic processes, this means they have to be run
every x seconds or microseconds, and that their execution time is known to be
less than their period.

To summarize, our goal at the scheduling level is to be able to do dynamic
preemptive scheduling as shown in figure 2 (page 10). Also, this implies the
question of how to manage communication between processes while scheduling
knowing that we must preserve the semantics of Lustre programs.

The proposition is then: let’s make a low-level and as small as possible system
layer which use verified Lustre components as much as possible.

3 Designing a preemptive kernel

3.1 Choosing the right platform

Before starting the development, the first step is to choose the platform to be
used. Since the project is to run a system on bare metal, there is two options
for the development phase. These two options use the same approach for the
organizations of the code, this means that porting the code from one to another
won’t be something complicated.

First option, use some external hardware. Either a “real” computer or a mi-
crochip like a Arduino or a Lego NXT brick. The advantage of this is that the
development takes place in real situation, and components like motors and sen-

9

t
a
s
k
1

t
a
s
k
2

e
v
e
n
t

i
d
l
e

event trigger ticksleeping runnable running

Figure 2: task1 is long and have a low priority, its period is 3 ; task2 is quick and
have a higher priority, its period is 1 ; event is very quick and have the higher priority
so when it is triggered the scheduler launch it at the next tick.

sors can easily be added to the system so the tests can go further than simple
printing on a screen.

Second option, use a virtual platform. Either a processor emulator or a virtual-
ization software like VirtualBox. The advantage here is that the deployment on
the platform for testing is really quick and that we can connect it a debugger,
which is almost vital to the development process, through a virtual serial port.

The choice has been to use both options for their positive sides: the devel-
opment will be done in VirtualBox until it’s sufficiently advanced to be worth
porting and continued on external hardware, the Lego NXT.

3.2 Lustre process

We first need to define what is a process and more specifically a Lustre process,
since this is what we want to schedule. A process consist essentially of an
identifier, a name (convenient for debugging), a period, a priority, a current
state, a container for its context, and a pointer to the function representing its
tasks (written in Lustre). The C structure representing a process is viewable in
code 3.

Code 3:

10

enum p r o c e s s s t a t e t {
PROC STATE NULL , PROC STATE SLEEPING ,
PROC STATE RUNNABLE , PROC STATE RUNNING

} ;

s t r u c t k e r n e l c o n t e x t t {
i n t esp ; /∗ s t a c k p o i n t e r ∗/
u n s i g n e d i n t s t a c k [STACK SIZE] ;

} ;

s t r u c t p r o c e s s t {
i n t p i d ;
c h a r name [PROC NAME MAXLEN] ;
t i m e t p e r i o d ;
i n t p r i o r i t y ;
p r o c e s s s t a t e t s t a t e ;
k e r n e l c o n t e x t t kc ;
v o i d (∗ t a s k f u n c t i o n) (v o i d) ;

} ;

Processes context data are in a separate structure because we need to pass
pointer to them to the function which makes the context switch.

The task function is a pointer to a C function in the process glue which for
ever repeat the cycle “read-inputs, compute, update-variables, write-outputs”,
where “compute, update-variables” is a call to the step function generated by
the Lustre compilation.

3.3 Context switching

The very first step that need to be acheived is to switch context. As said before
this is an operation performed by the scheduler which consist of saving the state
of the currently running process and restoring the state of another process to be
run.

A process “state” or context consists of the values in the registers and flags of
the processor, including the stack pointer and the instructions counter.

This operation is very low level so it has to be coded in assembly language.
The principle is quite simple: push the state on the stack and save the stack
pointer, then restore the stack pointer of the process to be run and pop its state
from the stack. When this function return, the return address is the value of the
restored instructions counter so the process to be run restart immediately as if
it had never been interrupted.

A very simple round robin scheduler was used in order to test the context

11

inputs outputs

Lustre task

C glue

System layer communication

Process:

Figure 3: Schema of a Lustre process. The glue is responsible for communication
with the system (scheduling, inter-process communication...)

switch: it alternatively runs two tasks and is called from the function handling
the interruption used by the timer.

Scheduling is a more complex activity than mere context switching, and now
that the context switch is working, it’s time to start the development of the
scheduler.

3.4 Preemptive scheduling of periodic tasks

We need to preemptively schedule a set of tasks which each have a period and a
priority. To achieve that our scheduler is triggered at a high frequency for a very
short time in which it check if some processes start a new period, if so it mark
them as runnable and add them into a max-heap which uses process priorities
as keys. Then it compares the priority of the currently running process with the
process pointed to by the root of the runnables heap. If the later is higher then
the scheduler switch the context.

When a task has finished a step (or cycle) it calls the scheduler to be put in the
sleepings list and removed from the runnables heap, until a new period starts.

It is required to have an idle tasks with the lowest priority and which is always
runnable.

12

3.5 Sporadic tasks

Implementation of sporadic tasks is based on processor interruptions, and the
handler of the interruption call the scheduler. Then, there is two choices for
what the scheduler should do.

The scheduler could either be made to immediately context switch to the spo-
radic tasks, or to manage the sporadic task as a regular task by adding it to the
runnable heap, except with a higher priority, so it’s the task selected at the next
scheduler round. Considering that the scheduler is triggered highly frequently
enough to see the launch of the sporadic task as almost instantaneous is rea-
sonable. Plus doing it this way has the advantage to follow the same model
as periodic tasks, which could be useful to make verification, or to implement
communication between those two types of tasks.

At the level of concrete implementation, in addition to the new interrupt han-
dler, sporadic tasks only required to add a trigger field which correspond to a
letter on the keyboard in the process t structure to be able to have multiple
event in VirtualBox since we don’t have access to any other input peripheral than
the keyboard.

Figure 2 (page 10) is a chronogram of an example of execution with two periodic
tasks and one sporadic tasks.

3.6 Inter-process communications

Inter-process communications is very important in critical real-time systems and
should not be hazardous. The synchronous paradigm of Lustre programs oblige
us to take a special care of this aspect in our system layer.

3.6.1 Issues and requirements

The requirements are imposed by Lustre working loop: “read-inputs, compute,
update-variables, write-outputs”, shared variables used for communications must
not change during a step of the loop in order to preserve the synchronous and
equationnal semantic of Lustre program’s code. This is simple when there’s only
one Lustre program running, but when multiple programs run in different process
that are preemptively scheduled, it become far less trivial. However Paul Caspi,
Norman Scaife, Christos Sofronis and Stavros Tripakis worked on this
particular problem and released a paper titled “Semantics-Preserving Multi-Task

13

Implementation of Synchronous Programs”1 discussing the subject and proposing
a solution.

3.6.2 The Dynamic Buffer Protocol

DBP (Dynamic Buffer Protocol) is an inter-task communication protocol that is
semantics-preserving and memory-optimal. DBP guarantees semantical preser-
vation under all possible triggering patterns of the synchronous program: thus it
is applicable not only to time-triggered, but also event-triggered applications. It
is based on the use of intermediate buffers and manipulations of write-to/read-
from pointers to these buffers: these manipulations happen upon arrivals, rather
than executions of tasks, which is a distinguishing feature of DBP. Moreover,
DBP is memory-optimal in the sense that it uses as few buffers as needed, for
any given triggering pattern. In the worst case, DBP requires at most N + 2
buffers for each writer, where N is the number of readers for this writer.

The way is has been implemented here is a communication module at the
system level, which is just a storage of double buffers with accessors. Buffers
memory is allocated statically on the stack since everything about shared variables
is known at compile time, in particular their type, and thus their size. A shared
variable is written by a task and read by one or many other tasks, each reader-
task have it’s own buffer for the shared variable. It’s the glue of Lustre process
which use the accessors of the communication module and its task inputs and
outputs to make processes communicate according to the DBP.

Then it’s all a question of when to read, write and swap buffers. This depends
on how the variable is shared. The shared variable can be read by a lower priority
task or by a higher one, and in the first case, the variable can be read through a
unit-delay (register) or directly, in the latter case, there’s always a unit-delay.

The figure 5 (page 15) is an example of tasks running and communicating
through shared variable as in the graph of figure 4 (page 15), which show all
three possible cases.

The writer task, w, maintain a double buffer B[0,1] with current and
previous pointers. Initially, previous = current = 0. When it runs, w
writes to B[current]. When it becomes runnable the two pointers are swapped
(moment b in figure 5).

It is important to note that this is done when the task becomes runnable, not
running, which is not the same for instance if a task with higher priority is still
running or becomes runnable at the same time. This is why the DBP can’t be

1ACM Transactions on Embedded Computing Systems, Vol. V, No. N, July 2007

14

w

-1
-1

r1

r2

r3
higher priority
with unit-delay

lower priority
with unit-delay

lower priority

Figure 4: w is the writer task ; r1 is a reader task with a higher priority than w and
a unit-delay ; r2 is a reader task with a lower priority than w and a unit-delay ; r3 is
a reader task with a lower priority than w.

w

r1

r2

r3

b da c

sleeping runnable running tickread from

Figure 5: An example chronogram with DBP.

15

managed by the tasks alone and has to be managed at system level.

The reader task r1, which has a higher priority than w, maintain a pointer p1,
which is set to previous when r1 becomes runnable (moment b and d in figure
5), and read from B[p1]. Since the inputs and outputs of Lustre tasks are used
to pass shared variables around, this is done silently and the pointer is implicit:
when r1 becomes runnable, B[previous] is copied as one of r1 inputs.

For the reader tasks r2 and r3, which have lower priorities than w, the protocol
says that the w tasks maintains their buffer (that’s the N of the N + 2 buffers
announced in the description of the protocol), but the implementation uses the
inputs and outputs of Lustre tasks so those additional buffers aren’t needed. In
fact they exists but they are distributed in the tasks, as input variables: when r2
becomes runnable (moment b in figure 5), B[previous] is copied as one of its
inputs, and when r3 becomes runnable (moment a and c in figure 5), the same
happens with B[current].

Using the Dynamic Buffer Protocol ensure that we don’t change the semantics
of the tasks when adding inter-process communication to preemptively scheduled
tasks. This, of course, is important for verification purpose.

4 Writing system components in Lustre

4.1 Which components?

Ideally we would like to have everything coded in Lustre, but it won’t be possible
for several reasons. One of which is that the call to the context switching
function doesn’t return by definition, so it can’t have a valid semantic in Lustre.
A not ending call can’t fit in Lustre “read-inputs, compute, update-variables,
write-outputs” loop.

So what we want is to have as much of the scheduler logic as possible in Lustre,
and keep the very low-level basic operations in C. Apart from context switching,
the scheduler has to select the next running task, and to maintain the periodic
tasks clock. These are the two parts of the scheduler that we are going to write
in Lustre.

4.2 Periodic tasks clock in Lustre

What we want here is a Lustre node that takes an array of periods as input and
output an array of boolean indicating if a period begins or not.

16

This is a trivial task in classical programming languages, but the absence of real
arrays and the dataflow approach in Lustre force us to think differently. The end
result (viewable in code 4) is quite simple but not straightforward for someone
who is not familiar with the dataflow paradigms and the Lustre arrays, remember
that they are unfolded at compile time.

Code 4:
node p e r i o d s c l o c k (p e r i o d s : i n t ˆn) r e t u r n s (a c t i v a t i o n : b o o l ˆn) ;
v a r d e a d l i n e s : i n t ˆn ;
l e t

d e a d l i n e s = 0ˆn −> i f p r e (d e a d l i n e s) = 0ˆn
then p e r i o d s − 1ˆn
e l s e p r e (d e a d l i n e s) − 1ˆn ;

a c t i v a t i o n = (d e a d l i n e s = 0ˆn) ;
t e l

Here is how it works: activation[i] is true only if deadlines[i]’s value
is 0. deadlines[i] is a flow which initial value is 0 (so when the program
start all the periods starts), and then is updated conditionally at each step. If
the value of deadlines[i] at the previous step was 0, then a new period
started at the previous step, so it’s value is periods[i] - 1. Else the value of
deadlines[i] is decremented by 1. This is done synchronously for all tasks.

4.3 Selection of the next running task in Lustre

The low-level implementation of this feature is quite simple: it simply uses a
max-heap of runnable processes indexed by their priorities. In Lustre we can’t do
it this way, once again the dataflow approach put things into a new perspective.

So we need to write the selection of the runnable process with the higher priority
as a system of equations.

We have access, as inputs, to the activation boolean array computed in code
4, to the priorities array and a boolean array indicating for each task if it has
finished since last step.

Code 5:
node s e l e c t t a s k (p r i o r i t i e s : i n t ˆn ; a c t i v a t i o n , f i n i s h e d : b o o l ˆn)

r e t u r n s (cur , n e x t : i n t) ;
v a r

r u n n a b l e : b o o l ˆn ;
l e t

r u n n a b l e = a c t i v a t i o n or (p r e (r u n n a b l e) and not f i n i s h e d) ;
c u r = p r e (n e x t) ;
n e x t = g e t n e x t (r u n n a b l e , p r i o r i t i e s) ;

t e l

17

A process is runnable if it has just been activated or if it was runnable at the
previous step and didn’t finish in between (code 5). Then knowing priorities and
runnable tasks we can compute which process we have to run next (code 6). The
currently running process is also returned so the low-level avoid context switching
if not needed (which is most of the time).

Code 6:
node g e t n e x t (r u n n a b l e : b o o l ˆn ; p r i o r i t i e s : i n t ˆn)

r e t u r n s (n e x t : i n t) ;
v a r

max : i n t ˆ(n +1);
h i g h e s t : i n t ;

l e t
max [0] = −1;
max [1 . . n] =

i f r u n n a b l e [0 . . n − 1] and
(p r i o r i t i e s [0 . . n − 1] > max [0 . . n − 1])

then p r i o r i t i e s [0 . . n − 1]
e l s e max [0 . . n − 1] ;

h i g h e s t = max [n] ;
n e x t = g e t l a s t t r u e (n , r u n n a b l e and

(p r i o r i t i e s = h i g h e s t ˆn)) ;
t e l

The get next node in code 6 make a clever use of the way Lustre unfold
arrays to simulate an operation equivalent to the folding of a list on an array.
Once unfolded, the code says that for i = 0 to n − 1, max[i+1] value is the
priority of process i if it is runnable and its priority is greater than max[i]. In
every other case, the value of max[i+1] is max[i] (max[0] is initialized to
−1 which is known to be less than the smallest priority, which is 0 for the idle
process).

When solving this system of equations the higher priority of all runnable process
is in max[n], which we can access because n is the number of tasks, a constant
known at compile time. Then the only thing left to do is to get which process
is runnable and has the priority that has just been computed. This is done by
constructing a boolean array where a cell at index i is true only if the process i
is runnable and have the priority we’re looking for. Then we have to look for the
index of this cell and that’s our selected process. Given Lustre arrays support,
this is done with a recursive node (once again we can do that because the depth
of the recursion, n, is known at compile time) in code 7.

Code 7:
node g e t l a s t t r u e (c o n s t s i z e : i n t ; a r r a y : b o o l ˆ s i z e)

r e t u r n s (i n d e x : i n t) ;
l e t

18

i n d e x = i f a r r a y [s i z e − 1] then s i z e − 1
e l s e w i t h s i z e = 1 then 0

e l s e g e t l a s t t r u e (s i z e − 1 , a r r a y [0 . . s i z e − 2]) ;
t e l

The get last true node walk through a boolean array backward looking for
a true value and then return its index in the array. In our usage their should be
only one true value in the array, but in case not, we arbitrarily choose the last
one. In case no true value is encountered in the array, we still return 0 because
in our case it represents the idle process which is always runnable.

This end the redevelopment in Lustre of this part of the scheduler. And now
that we have a working system with as little low-level code as possible, we can
start to move our interest into verification.

5 Model checking

Lustre programs can be verified using different approaches of model checking,
depending on what want to prove correct.

Model checking is a technique for automatically verifying correctness prop-
erties of finite-state systems. This is done by testing automatically whether a
modelisation of a system meets its specification.

5.1 Boolean property checking

One can use the Lesar tool to verify that a certain boolean property is always
true. This is done by explorating every reachable state of the automata produced
by the Lustre compilation and see if the property is actually true in every possible
case.

The problem with this approach is that it only works with boolean property,
and that the complexity of the verification is exponential in the number of states
in the automata. This means that emulating integers with boolean tuples won’t
work without a small upperbound on those numbers. This is known as the state
explosion problem.

19

5.2 Program verification

Lustre programs are self-descriptive, thanks to the declarative aspect and the
dataflow approach. This means that the verification tools bundled with Lustre
can most of the time operate on Lustre programs themselves. When they can’t
because the program rely on external tools or have a part that is not programmed
using Lustre, a model of the program that have the same behavior can be coded
in Lustre and then the overall program can be verified.

The advantage of this approach is that the whole program is formally verified
and is then certified to work as expected.

In the case of our project there’s clearly a need for modelisation since the system
part in not programmed in Lustre but in C. The problem is that this part is coded
in C specifically because it if not feasible with Lustre so an exact modelisation
might not be possible. However, it is still possible to verify Lustre components
individually and to extensively tests the system parts.

Since only part of the scheduler are coded in Lustre only those part can be
formally verified. This means that the scheduler can’t be verified as it is but
that it is rather an instance with specific tasks that we are able to verify. This is
not a problem since for each Lustre critical real-time software using our system
architecture we know almost everything about the tasks at compile time and
verification can be done on each particular project individually, certifying their
own scheduling before they’re actually in production use.

As we jut said, the low level system layer can’t be verified for now. Efforts
are made in this direction, for instance a Xavier Leroy team at INRIA is working
on Compcert, a verified C compiler which has ARM (widely used in embedded
devices) among it’s target architectures. This, again, is why we need this layer
as thin as possible.

6 Conclusion and perspectives

6.1 Automatic generation toolchain

Providing an automatic generation toolchain is the ultimate goal. The aim is to
be able to build complete kernel usable in embedded system from a set of Lustre
tasks plus a configuration file describing their periods, their priorities and which
of the inputs and outputs variables are shared and with which other tasks.

The configuration could also specify a target architecture, either x86 (as in

20

VirtualBox), or specific a ARM model for embedded devices.

6.2 Remaining verification work

Even if I was able to start verifying some properties of the scheduler with the
help of Pascal Raymond, the two months I spent at Verimag were too short to
make all the necessary verification work. Ideally a test suite should be written
for the system layer, at least until we can have the same kind of verification for
C as we have for Lustre, and a framework for validation of the whole system
should also be written. It would allow rapid verification by using the framework
to adapt the verification to each specific instance of the system (each set of
tasks, architecture etc.) and could be integrated in the automatic generation
toolchain.

6.3 Remaining work on the Lego NXT

Now that we have a working and sufficiently advanced system running in Virtu-
alBox we can start porting it to the Lego NXT brick. I didn’t have much time to
spend on that either, but since I left Kévin Marquet has made some significant
progress in this direction. This will allow further testing and the development of
“vertical” communication.

The only “vertical” communication we have for now is between the scheduler
and its high level components, but since it’s the scheduler which call them all
the communication is made through inputs and outputs of Lustre tasks. What
we aim to develop is the communication between scheduled Lustre tasks and
low-level components such as drivers. This communication would use external
functions (in Lustre it is possible to declare external functions that are written
in the host language, which is C) and should also follow the Dynamic Buffer
Protocol so the update of the data is consistent with Lustre execution loop.

6.4 Conclusion

During this two months at Verimag, I learned a lot of interesting stuff while
working on my subject, but also many things about the everyday life in a computer
science research lab. Now I can say with even more conviction that the job I
want to do is actually computer science researcher.

The project has progressed well during these two months: the dynamic pre-
emptive scheduling works well, the inter-process communication also, the system

21

layer is already rather small... but there’s still many things to do left for future
interns!

22

