Research Internship Report

with the Parkas Inria/ENS team in the Computer Science Department
of the Ecole normale supérieure, from March to August 2012.

LETTRES ﬁ SCIENCES

L‘ ECOLE NORMALE SUPERIEURE f
[|

&:/ﬂ/a/-

INVENTEURS DU MONDE NUMERIQUE

Supervised by Marc Pouzet (marc.pouzet@ens.fr).

Mixing Continuous and Discrete Time in a Synchronous Language

Pablo Rauzy

pablo.rauzy@ens.fr

Computer Science Department — Ecole normale supérieure

July 19, 2012

Abstract

A hybrid system is a system that exhibits both discrete and continous behaviors (e.g., a
programmed controller and the evolution of its environment). ZELUS is a hybrid synchronous
programming language, allowing the programmation and modelization of hybrid systems. The
modelization of hybrid systems works by alternating between continuous phases and discrete
steps. During continuous phases the continuous state of the system evolves in time with re-
spect to differential equations. At discrete steps the discrete state of the system may change
instantaneously.

The main result of this report is a static analysis of ZELUS code which detects if there can
be an infinite number of discrete steps between two continuous phases. The presence of a finite
number of such steps is a necessary condition to ensure time progress during a simulation of the
system.

The question of the automatic translation of hybrid automata, a formalism to analyze/mod-
elize hybrid systems, into ZELUS code, is also raised. Small results in this direction are shown
and then a roadmap for pursuing this translation is proposed.

Contents

1 Hybrid synchronous languages at Parkas
1.1 The Parkas team L
1.2 Synchronous languages
1.3 Hybrid systems L

2 ZELus: an hybrid synchronous language
2.1 Presentation of the language
2.2 MiniZEIus e
2.3 Example of MiniZ&lus program i e e
3 Static analysis of cascades of discrete zero-crossings
3.1 Discrete/continuous control-flow graph
3.2 Building the discrete/continuous control-flow graphs
3.3 Examples of discrete/continuous control-flow graphs
3.4 Adding support for automata L. L
3.5 Results o
4 Working with hybrid automata in ZELUS
4.1 What is a hybrid automaton
4.2 An example of hybrid automaton
4.3 Expressing boolean expressions using zero-Crossingso i e e e
4.4 From hybrid automata to ZELUS code: propositions
5 Conclusion
Thanks

~No oG AW ww

[y
W N © oo~

[y

14
15
16
18

19

| would like to thank everyone in the Parkas team for welcoming me as an intern in their group and for the interesting
conversations we had, whether it was about work or not. Among them | would especially like to thank Marc Pouzet,
my supervisor, without whom this internship wouldn't have been possible.
| would also like to give special thanks to the other interns and the PhD students of the team with whom | had great
fun and who provided moral support when | needed it.
And last but not least, | would like to thank Isabelle Delais and Joélle Isnard for their helpful administrative support.

1 Hybrid synchronous languages at Parkas

1.1 The Parkas team

Parkas: Parallélisme des Réseaux de Kahn Synchrones.

The Parkas team addresses the design, semantics and compilation of languages for the implemen-
tation of provably safe and efficient computing systems. It is driven by the ideal of a unique source
code used both to program and simulate a wide variety of systems, including (1) embedded real-
time controllers (e.g., fly-by-wire, engine controller); (2) computationally intensive, numerical and
non-numerical applications; (3) simulations of a large number of embedded systems in close inter-
action (in factories, electrical or sensor networks, train tracking, etc.). All these applications drive
the design and implementation of formally defined languages, where the generated code is guaran-
teed to be “correct by construction” with respect to the single source specification. In addition, all
simulations can be replayed, including the environment, thanks to determinism. All safety-critical
parts of the generated code are validated by annotations, in the form of automated formal proofs.
All performance critical parts are likewise annotated. When appropriate, their combined distributed
performance is proven to meet real-time constraints against all tested environments.

Our research team is characterized by its attachment to the simplicity and complementarity of the
functional, data-flow model of Kahn process networks with the theory and practice of synchronous
languages.

We believe that the current application domain of synchronous languages could be widened
significantly, provided that we answer two kinds of questions. First of all, the ability to program
and simulate a discrete controller together with its environment, made of (a huge number of) other
processes added /removed dynamically and possibly evolving in continuous time. Second, the ability
to generate efficient parallel code from a synchronous specification, targeting modern architectures
including shared-memory multicore processors, non-uniform manycore architectures, tiled processor
arrays, and heterogeneous systems with hardware accelerators (GPU, DSP, FPGA). Answering this
second kind of question involves reasoning about architecture constraints while preserving modular
composition, and supporting relaxed synchronous models with jittering, buffered communication.

To work towards our goal, we leverage formal principles and practical experience in language
design, semantics, type theory, concurrency models, synchronous circuits, code generation, compiler
optimization, polyhedral compilation algorithms, and parallel hardware.

(Description taken from http://www.di.ens.fr/ParkasOverview.html.)

1.2 Synchronous languages

Synchronous programming languages such as Esterel[16], Lustre[3], and Lucid Synchrone[4] support
the synchronous programming paradigm. The principle of synchronous programming is to make the
same abstraction for programming languages as the synchronous abstraction in digital circuits. Syn-
chronous circuits are indeed designed at a high-level of abstraction where the timing characteristics
of the electronic transistors are abstracted away. Each gate of the circuit (and, or, ...) is therefore
assumed to compute its result instantaneously, each wire is assumed to transmit its signal instanta-
neously. A synchronous circuit is clocked and at each tick of its clock, it computes instantaneously
its output values and the new values of its memory cells from the its input values and the current
values of its memory cells.

The synchronous abstraction makes reasoning about time in a program a lot easier, thanks to
the notion of logical clock ticks: a synchronous program reacts to its environment in a sequence
of ticks, and computations within a tick are assumed to be instantaneous and simultaneous. The
synchronous abstraction eliminates the non-determinism resulting from the interleaving of concurrent
behaviors, which allows thinking about parallelism in a clean and simple context. These properties

also allows deterministic semantics [1, 2], thereby making synchronous programs more amenable to
formal analysis, verification and certified code generation, and usable as formal specification.

1.3 Hybrid systems

A discrete system is a system with a finite number of states. Typical examples are circuits, digital
chips, and synchronous programs.

A continuous system is a system with a continuous behaviour and a real-valued state space.
Physical systems with quantities like time, temperature, speed, acceleration etc. are continuous sys-
tems. Their evolution over time can be modelized by continuous functions or differential equations.

A hybrid system [18] is a system that exhibits both continous and discrete behaviors. Such a
system has a continous state and a discrete state. The continous state evolves in time during con-
tinuous phases whereas the discrete state changes instantly at discrete steps between the continuous
phases.

Among hybrid systems, some are intrinsically hybrid: a glass of water being filled up which
suddenly overflows undergoes an instantaneous change in physical behavior, the same is true for a
bouncing ball at each impact. Others systems have discrete and continuous components: a pro-
grammed controller which induces discrete changes and its envrironment which evolves continuously,
an elevator or an automatic transmission system are examples of hybrid systems.

Example. As an example we will model a water tank. The tank leaks at a constant rate v, and
water is added to the tank at a constant rate w if the tap is turned on, or not at all if the tap is
turned off. We want the level of water = (continuous environment) to never be higher than r1’ and
we want the tank never to be empty (z must be greater than r2"). For safety, we decide that the tap
is turned on before the tank is actually empty but not to soon either, when z is below 2. For the
same reason we decide that the tap is turned off before reaching the maximum authorized level but
not to soon either, when x is over r1. The tap is controlled by a programmed computer (discrete
controller) which receives data from sensors placed in the tank at depths corresponding to r1, r1’,
r2, and r2’. Figure 1 illustrates this example.

let hybrid water tank () = x
where

rec init x = 0.0

and automaton

| On -> do
der x =w -. v
until up(x -. rl)

wtinue off
done

c—
iz =1

programmed computer

> communication link

@©) sensor

Figure 1: lllustration of the water tank hybrid system

2 ZELus: an hybrid synchronous language

Before presenting our work on a static analysis in Section 3 (“Static analysis of cascades of discrete
zero-crossings”, p. 7), we start with a presentation of the ZELUS programming language. After that,
the part of the language that we are working with, which we will call MiniZélus, is presented in
more detail. Finally, an example of MiniZé&lus program is given.

2.1 Presentation of the language

Hybrid modelers such as Simulink have become corner stones of embedded systems development.
They allow both discrete controllers and their continuous environments to be expressed in a single
language. Despite the availability of such tools, there remain a number of issues related to the
lack of reproducibility of simulations and to the separation of the continuous part, which has to be
exercised by a numerical solver, from the discrete part, which must be guaranteed not to evolve
during continuous phases.

Synchronous programming languages such as Lustre [3] and then SCADE! have proven their
abilities to address the problems raised by critical embedded systems. The idea of ZELUS is to reuse
what was learned from synchronous programming languages for the discrete part and to add ordinary
differential equations (ODEs) to be able to modelize the continuous part of hybrid systems.

The kernel of ZELUS is a minimal Lustre-like synchronous language, based on the first-order part
of Lucid Synchone [4], without clocks, in which data-flow equations can be mixed with ODEs with
possible reset. The integration is carried out by Sundials?, an external® numerical solver.

The ZELUS language also has hierarchical automata [6] that can be arbitrarily mixed with data-
flow equations and ODEs.

The type system [7] of the language can statically distinguish discrete computations from con-
tinuous ones to ensure that signals are used in their proper domains. It also statically ensures that
discrete state changes are aligned with zero-crossing events and that the function passed to the
numerical solver has no side-effects during integration.

A semantics [5] based on non-standard analysis which gives a synchronous interpretation to the
whole language, clarifies the discrete/continuous interaction and the treatment of zero-crossings,
and also allows the correctness of the type system to be established.

The ZELUS language has been developed in the Parkas team by Marc Pouzet and Timothy
Bourke.

Similar efforts have been made at Berkeley by Edwards A. Lee and Haiyang Zheng working on
Ptolemy [9, 10].

Zero-crossing. A zero-crossing occurs when the graph of a function crosses zero from negative
to positive. It is an event that can happen while the numerical solver is integrating functions (e.g.,
while the environement evolves). Using ZELUS's up construct, one can ask the numerical solver
to watch for particular zero-crossings. When a watched zero-crossing occurs, a discrete step is
triggered. Changes to the discrete state of the program can happen (e.g., the controller’s program
can act) at these discrete steps.

There are several possible definitions of such an event. For a given signal x, a zero-crossing could
be triggered either when x < 0 and then = > 0, or when = < 0 and then = > 0, or when x < 0 and
then > 0. In ZELUS, zero-crossings are observed by Sundials which uses the first definition.

'http://www.esterel-technologies.com/products/scade-suite/
https://computation.llnl.gov/casc/sundials/main.html
3using ML-Sundials: http://www.di.ens.fr/ParkasSoftware#MlSundials

2.2 MiniZélus

The work done during this internship is only concerned with hybrid ZELUS code, which can contain
the up operator to watch for zero-crossings. This means we do not treat some parts of the lan-
guage, such as the pre operator which can only be used in entirely discrete nodes (“nodes” is the
Lustre, Lucid Synchrone, and now ZELUS name for what would be a function in other programming
paradigms).

For clarity and simplicity reasons we only present the subset of the ZELUS language that we are
working with. The BNF of this subset, which we will call MiniZélus, is presented in Code 1.

Code 1 MiniZélus' BNF

x ::= Variables (x, y, u, v, ...)
v ::= Values (42, 13.37, ...)
o ::= Operators (+, -, *, ...)
q ::= State name ("Foo", "Q51", ...)
e 1:1=X
| v
| <e> o <e>
| "last" x
z ::= "up" <e>
h ::=<z> "->" <e> ["|" <h>]x*
s 1:=q
I “dO" x = <e> [uandn x = <e>]* "in“ q
t ::=<z> "then" s ["|" <t> J*
| <z> "continue" q ["|" <t> 1%
u ::= "do" <E> "until" <t>
E ::= "init" x "=" <e>
| llderll X n=n <e> ["init" <e>] ["reset" <h>]
| x = "present" <h>
| x = <e>
| "automaton" ("|" q "->" <u> ["unless" <t>] "done")+
| <E> "and" <E>
The meaning of the expressions presented in Code 1 are explained the in following table:
last x Is the value of the left limit x.
up (e) Watches for zero-crossings of the expression e continuously in time.
It emits the value zero when a zero-crossing of e occurs.
init x = e Gives to x the initial value of the expression e at the initial instant.

X = present z_1 -> Resets the value of x to the value of the expression e_i when the

el] ... | zn -> zero-crossing z_i occurs.

en

der x = e init e 0 Gives to x the initial value of the expression e_0 and says that x

reset z.1 -> e.1 | evolves in time with respect to the differential equation & = e. When
| zn -> en the zero-crossing z_i occurs, the value of x is reset to the value of

the expression e_i at the zero-crossing instant.

X =e Gives to x the same value as e continuously in time.

| Q -> do ... done Creates an automaton mode, named Q.

unless t Is a guard which prevent entering the mode if a particular condition

is verified, in that case it switches to another mode of the automaton
(in which the unless guard is skipped).

until t Creates a switch to other modes of the automaton.

z continue Q Switches to mode Q when condition z (expressed as a zero-crossing)
occurs, the value of the continuous variables are conserved.

z then Q Switches to mode Q when condition z (expressed as a zero-crossing)
occurs, the continuous variables are reset to the last value they had
in state Q.

z then do ... in Q Switches to mode Q when condition z (expressed as a zero-crossing)
occurs, the continuous variables are reset to the last value they add
in state Q, except if they are assigned a value in the ... block.

E.1 and E2 Puts the two expressions E_1 and E_2 in parallel.

2.3 Example of MiniZélus program

Our example of a MiniZélus program modelizes a possible evolution in time of the water tank
hybrid system presented in Section 1.3 (“Hybrid systems”, p.4). In this instance, the water tank
is initially empty, and we decide that the tap is turned on and off when the water level is mid-way
respectively between 72 and 72/, and r1 and r1’. The corresponding MiniZélus code is presented
in Code 2

Code 2 Modelof the water tank system when initially empty

init x = 0.0
and automaton
| On -> do
der x =w - Vv
until up(x - ((r1 + r1’) / 2.0)) continue Off

done
| 0ff -> do
der x = - v
until up(((r2 + r2’) / 2.0) - x) continue On
done

3 Static analysis of cascades of discrete zero-crossings

During the execution of a ZELUS program, when a watched zero-crossing occurs, the integration
phase stops (we exit the continuous mode), and a discrete step is executed. Time does not advance
at the discrete step: it is supposed to be instantaneous as in classical synchronous programming.

Thus, it has been decided in ZELUS that only one discrete step can occur between two continuous
phases. This choice is a way of guaranteeing that time always flows. However, this constraint could
be relaxed if we could guarantee that there are only a finitie number of executed discrete steps
between any two continuous phases.

This relaxed constraint could be useful for the design of programs: for instance if one is watching
zero-crossings of a piecewise continuous signal, one may also want to catch “instantaneous” zero-
crossings of the signal, happening at a discrete step in which the value of the signal suddenly becomes
positive after having been negative at the end of the integration phase.

Such a relaxation of our necessary condition leads to greater expressivity, however it is only
suitable if it maintains the safety property that the previous version achieved. The safety property
we are concerned with is not having infinitely many discrete steps between two integration phases
so that time keeps flowing (time-must-flow constraint).

In this section we suppose that we authorize watching for discrete zero-crossings in ZELUS. In
this setting we try to find a way to statically determine if the time-must-flow constraint is still
respected in the programs we can write.

3.1 Discrete/continuous control-flow graph

Since ZELUS programs are static in the sense that they cannont dynamically build state at runtile,
the time-must-flow constraint can't be violated if no variables depend instantly on itself. Since an
integration phase takes time, it induces a delay that breaks the instant dependency cycle. So the
idea is to do a dependency analysis of the variables. To this end, we build a graph representing the
control-flow of the hybrid program. This graph have two types of vertices: continuous vertices, that
correspond to the integration phases; and discrete vertices which correspond to discrete steps. The
edges between vertices correspond either to zero-crossings, or to the resumations of integration after
a series of discrete steps. When drawing such graphs, continuous vertices are represented by round
boxes and discrete vertices by rectangular boxes.

If discrete zero-crossings are forbidden there will be exactly one edge coming out of each discrete
vertex and it will go back to a continuous vertex (i.e., the next integration phase starts after a single
discrete step). This means that every cycle in the graph trivially goes through a continuous vertex,
since the obtained graph is bipartite.

When discrete zero-crossings are allowed, there can be egdes which come out of a discrete vertex
and go to another discrete vertex. What is wanted then is to verify the absence of cycles that only
go through discrete vertices in the graph, ensuring that there will never be an infinite number of
discrete steps between two integration phases.

3.2 Building the discrete/continuous control-flow graphs

Figures 2 to 5 show the translation of MiniZélus equations to discrete/continuous control-flow
graphs. For the sake of clarity, the automaton construct will be treated later. These graphs
do not take discrete zero-crossings into account, they correspond to the second paragraph of the
previous subsection. The changes that are needed to take discrete zero-crossings into account will
be presented after basic composition has been explained.

Putting these pieces of MiniZélus code together is done using the “and” operator, as we have
seen in Section 2.2 (“MiniZélus ", p.6). The corresponding operation on graphs is a composition
with the following rules:

o As we do not treat automaton, each continuous variable is uniquely defined (there is only one

mode), so we can merge all the continuous vertices into one continuous vertex.

o Since all variables are initialized only once, the init graphs (Figure 2b) can be merged into

one single discrete vertex and we connect its outgoing edge to the continuous vertex.

o The edge of each discrete vertex in the present graphs (Figure 4b) connects with the con-
tinuous vertex.

In order to take discrete zero-crossings into account, we have (at least) two solutions.

We can decide that ZELUS' up also watches for discrete zero-crossings. In this setting, each
time we have an edge going from continuous vertex to a discrete vertex (i.e., which corresponds
to a zero-crossing), we need to add edges to this discrete vertex from each other discrete vertex
that assigns a value to a variable on which the zero-crossing depends (the variables appearing in
an up expression). In practice, the edge count of the resulting graphs is so high that the existence
of a discrete vertex cycle is almost guaranteed (and was obvious in the practical examples that we
tested). This suggests that this approach cannot lead us to useful conclusions.

The other approach is to split up into two operators: one watching for continuous zero-crossing
and the other watching for discrete zero-crossings, we will denote them respectively as upc and upd:

z ::= "upc" <e>
| "upd" <e>

The language is then still as expressive as with the other choice (it is still easy to watch for
both discrete and continuous zero-crossing of an expression) while allowing to avoid a considerable
amount of useless edges in the graphs we are building. The following changes to the graphs are
necessary:

o For each of the edges corresponding to an upd and only for them we do the same operation of
adding edges between discrete vertices as we would be doing in the case of up handling both
discrete and continuous zero-crossings.

o The edges from the continuous vertex to a discrete vertex have to be removed if the edge
corresponds to an upd.

3.3 Examples of discrete/continuous control-flow graphs

An example of a hybrid program with discrete zero-crossings is presented in Code 3. What is
happening in this example is the following:
o The variables are initialized: z is set to —3.0, y and z are set to —1.0 (this is considered a
discrete step).
o The integration phase starts, y is constant, the derivatives of x and z are both 1.0.
e When z crosses zero (upc(z)), the integration phase stops and we enter a discrete step in
which y is set to 3.0.

o Since y crosses zero during a discrete step (upd(y)), another discrete step is triggered in
which z is set to 1.0.

init x = e
(a) MiniZélus code

X=e —

(b) Corresponding graph

Figure 2: init

der x = e init e 0 reset z.1 > e.1 | ... zn -> en

(a) MiniZélus code

(b) Corresponding graph

Figure 3: der

X = present z1 ->el | ... | zn ->en

(a) MiniZélus code

(b) Corresponding graph

Figure 4: present

X =e
(a) MiniZélus code

(b) Corresponding graph

Figure 5: assignment

10

The integration phase resumes, starting with the new values of x and y.

When x — 2 crosses zero (upc(x-.2.0)), the integration phase stops and we enter a discrete
step in which y is set to —2.0.

Since —y crosses zero during a discrete step (upd(-.y)), another discrete step is triggered in
which z is set to —2.0.

Since —x crosses zero during a discrete step (upd(-.x)), another discrete step is triggered in
which z is set to —1.0.

The integration phases starts again, with the new values of z, y, and z.

When z crosses zero (upc(z)), ...

The corresponding discrete/continuous control-flow graph is shown in Figure 6 and the evolution
of the values of z, y, and z is plotted in Figure 7. In this example we can statically determine that

there

will not be any infinite cascade of discrete zero-crossings.

Code 3 Finite cascade of zero-crossings

der x = 1.0 init -3.0 reset upd(y) -> 1.0

| upd(-. y) -> -2.0

and der y = 0.0 init -1.0 reset upc(z) -> 3.0
| upc(x -. 3.0) > -2.0
and der z = 1.0 init -1.0 reset upd(-. x) -> -1.0
X = -3.0
y = -1.0
z = -1.0

Figure 6: Discrete/continuous control-flow graph of Code 3

Another hybrid program, in which there is an infinite cascade of zero-crossings, is visible in
Code 4. What is happening in this example is the following:

@)

@)

o

The variables are initialized: x, y and z are set to —1.0.

The integration phase starts, x and y are constant, the derivatives of z is 1.0.

When z crosses zero (upc(z)), the integration phase stops and we enter a discrete step in
which z is set to 1.0.

Since x crosses zero during a discrete step (upd(x)), another discrete step is triggered in
which y is set to 1.0.

Since y crosses zero during a discrete step (upd(y)), another discrete step is triggered in
which z is set to —1.0.

Since —x crosses zero during a discrete step (upd(-.x)), another discrete step is triggered in
which y is set to —1.0.

11

d

Xy
Figure 7: Plot of Code 3

o Since —y crosses zero during a discrete step (upd(-.y)), another discrete step is triggered in
which z is set to 1.0.
e Since x crosses zero during a discrete step (upd(x)), ...

The corresponding discrete/continuous control-flow graph is shown in Figure 8. In this example
we can statically determine that there can be an infinite cascade of discrete zero-crossings.

Code 4 Infinite cascade of zero-crossings

der x = 0.0 init -1.0 reset upd(y) -> -1.0
| upd(-. y) -> 1.0
| upc(z) -> 1.0

0.0 init -1.0 reset upd(x) -> 1.0
| upd(-. x) -> -1.0

and der y

and der z 1.0 init -1.0

X = -1.0
y -1.0
z = -1.0

Figure 8: Discrete/continuous control-flow graph of Code 4

3.4 Adding support for automata

This static analysis can be extended to add support for ZELUS' automaton feature. Each state of
an automaton is independant and is internally (the <E> part of the definition of u in the BNF in
Code 1) treated as we did with MiniZélus before adding automata.

12

What needs to be done is to connect to the states of an automaton between them and with the
other equations at the same level as the automaton. The graphs for each state are connected using
the following rules:

o For each state, we add a new discrete vertex called its “guard” discrete vertex. This vertex
is empty (i.e., it does not correspond to any assignments) and is always where we enter the
state. We add an edge from it to the continuous vertex of the state.

o The global (outside of the automaton) initialization discrete vertex is connected only to the
“guard” discrete vertex of the first state of the automaton (which in ZELUS is implicitly the
initial state).

o In each state, for each unless clause (see t in the BNF given in Section 2.2) we add an edge
from the “guard” discrete vertex of the state to the “guard” discrete vertex of the state to
which the clause would go (see q in the BNF).

o In each state, for each until clause (see t in the BNF):

— If it is a continue transition or a simple then transition (the first case of s in the BNF),
we add an edge from the continuous vertex of the state to the “guard” discrete vertex
of the state to which the clause would go (q in the BNF).

— In the other case (then do ... in), we create a discrete vertex corresponding to the
assignments done in the transition and add two edges: one from the continuous vertex
to the state to the new discrete vertex, and one from the new discrete vertex to the
“guard” discrete vertex of the state to which the clause would go.

If there are equations composed (using “and”) with the automaton that watch for dis-
crete zero-crossings that depends on the variables that are assigned a new value in the
automaton transition, we also add an edge for each as we did before adding automata.

The same analysis of the presence of cycles of discrete vertices can be done on the obtained
graph. It enables us to authorize more than one unless transition to be taken in a row before
entering a new integration phase. This would for instance allow an automaton which can choose its
initial state depending on the initial values of the variables, by making a finite non-cycling cascade
of initial conditions check, stopping in the first state for which the initial condition is satisfied.

3.5 Results

Our static analysis of discrete zero-crossings is a sound over-approximation. In some cases it can
guarantee that our time-must-flow constraint will be respected (the number of discrete steps between
two integration phases is always finite). In other cases, it can only say that the constraint may not
be respected. Indeed, there might be a cycle of discrete vertices in the graph while the numerical
values in the program are such that there will not actually be an infinite number of discrete steps
between two integration phases when the program is executed. For instance it would be the case
for Code 4 (“Infinite cascade of zero-crossings ", p.12) if all the reset values of y or x were of the
same sign.

What we can do in the compiler is then to print a warning when there is a cycle of discrete
vertices in the discrete/continuous control-flow graph, instead of stopping the compilation on an
error. This warning could be turned into an error by an option when the compiler is called.

This analysis could be enhanced by taking statically known values, or at least their signs, in
consideration. Doing this would help accepting more programs in which the dependency cycle exists
but will never lead to an infinite cascade of discrete zero-crossings during the execution.

13

4 Working with hybrid automata in ZELUS

Hybrid automata [14] are a mathematical model for describing hybrid systems such as defined in
Section 1.3 (“Hybrid systems”, p.4). A hybrid automaton is a finite state machine with a finite set
of continuous variables whose values are defined by ODEs.

A lot of work regarding hybrid systems has been done within this particular formalism. For
instance HyTech [15], an automatic tool for the analysis of hybrid systems using model checking, uses
hybrid automata for hybrid systems specifications. Also, hybrid automata have been implemented
in tools such as Scicos [19], a graphical dynamical system modeler and simulator.

Thus, it is interesting to see if any hybrid automaton can be translated into ZELUS in an
automatic manner.

This work is not finished yet at the time this writing. The ultimate goal is to have an automatic
way to translate any given hybrid automaton into ZELUS code. Here we present hybrid automata
and then present which boolean expressions can be expressed in terms of zero-crossings, which is one
of the problems raised by the translation of hybrid automata to ZELUS code. After that, a roadmap
of what is left to do to acheive our goal is proposed.

4.1 What is a hybrid automaton

The purpose of a hybrid automaton is to modelize all the possible behaviors of a hybrid system. The
discrete state of the system is modelized by the states (called control modes) of the automaton, its
continuous state is modelized by variables in R. Discrete changes of the system state happen during
the transitions (called control switches) of the automaton. Continuous changes happen in the states
of the automaton and are modelized by differential equations.

4.1.1 Formal definition

A hybrid automaton H consists of the following components (definition derived from the one given
by Henzinger in [14]):

Variables. A finite set X = {1, ..., 2, } of real-numbered variables. Let X be the set {1, ..., 4y}
of dotted variables that represent first derivatives during continuous change. and let X’ be the set
{z},...,2,} of primed variables that represent values at the conclusion of discrete change.

Control graph. A finite directed multigraph (V, E'). The vertices in V are called control modes.
The edges in E are called control switches.

Initial, invariants, and flow conditions. Three vertex labeling functions init, inv, and flow that
assign to each control mode v € V' three predicates. Each initial condition init(v) is a predicate
whose free variables are from X. Each invariant condition inv(v) is a predicate whose free variables
are from X. Each flow condition flow(v) is a predicate whose free variables are from X U X.
Jump conditions. An edge labeling function jump that assigns to each control switch e € E a
predicate. Each jump condition jump(e) is a predicate whose free variables are from X.

Events. An edge labeling function event that assigns to each control switch e € E a finite set
of assignments to the variables in X’. The values which are assigned may depend on the values of
variables in X.

4.1.2 Semantics

The execution of a hybrid automaton is an alternance of continuous phases, in control modes, and
discrete steps, at control switches.

For each control mode v € V, the init(v) predicate must be satisfied if v is the initial control
mode of the automaton (init(v) = false for control mode which cannot be initial).

14

In a control mode v, the continuous state evolves according to differential equations defined by
the predicate flow(v). During this phase the predicate inv(v) must be satisfied.

In a control mode v, any control switch e = (v,w) € E to another control mode w might be
taken at any time while the predicate jump(e) is satisfied. In that case, the variables in X’ are
assigned values according to event(e) and then the w control mode is entered with an initial value
x, for each variable z;.

We call trajectory the evolution in time of the state of a hybrid system. A trajectory is said to
be valid with respect to a hybrid automaton if it is a possible execution of the hybrid automaton:

o It must satifies the initial condition described by the init predicate of the control mode
corresponding to the initial discrete state of the trajectory ;

o The continuous state must evolve according to the ODEs described by the flow predicate of
the control mode corresponding to the current discrete state ;

o The invariant condition described by the inv predicate of a control mode must be satisfied
while the discrete state of the trajectory corresponds to this control mode ;

o Control switches must be taken when the corresponding jump condition is satisfied ;

o Discrete changes at discrete steps must respect the assignments done in the event of the
corresponding control switch.

4.2 An example of hybrid automaton

As a simple example of hybrid automaton we will model the water tank (this example is inspired
from the Lecture Notes on Hybrid Systems [17] by Lygeros) from Section 1.3 (“Hybrid systems”,
p.4).

We can model this system, which is represented on Figure 1 (“lllustration of the water tank
hybrid system ", p.4), using the following hybrid automaton:

The set of real-numbered variables: V = {z} (so we have V = {&} and V' = {2'}).
The control graph: G = ({On, Off },{(On, Off), (Off, On)}).
The inititial conditions:

—init(On) =z <rl' ANz > r2

— init(Off) = false

(@]

o

@]

o The invariant conditions:

— inv(On) =z < rl’

— inv(Off) =z > r2/
The flow conditions:

- flow(On) =t =w—v

- flow(Off) =& =—v

o

O

The jump conditions:
— jump((On, Off)) = x >rl
— jump((Off, On)) = x < 12

The events:
— event((On, Off)) =2’ + =z
— event((Off,On)) =2’ + =z

(@]

The corresponding hybrid automaton is drawn in Figure 9.

15

4.3 Expressing boolean expressions using zero-crossings

In ZELUS, execution of a discrete step is always triggered by a zero-crossing, as it is the only discrete
event the solver observes during the integration phase. This means that the transition of a ZELUS
automaton from one mode to another is also triggered by a zero-crossing.

In classical synchronous programming languages, the transitions between an automaton’s modes
depend on boolean conditions. In hybrid systems formalisms such as hybrid automata [14], the tran-
sitions between control modes are boolean predicates over the values of the real variables representing
the continuous part of the state of the system.

Thus, it is interesting to study which boolean expressions we can express in terms of zero-
crossings.

4.3.1 ZELus’ up

The ZELUS operator to watch for zero-crossing is up. The up operator takes a continuous signal
and emits the value zero when the signal crosses zero.

The obvious idea of translation the boolean expression b in if b then 1 else -1 is not prac-
tically usable, since solver such as Sundials are not designed to detect such steep signals. They are
however very efficient with smooth curves using numerical methods, such as Newton's method, to
compute the precise instant at which the zero-crossing occured.

If x and y are two continuous variables, — y is negative when x > y, crosses zero exactly when
x =y, and positive when x < y.

Thus, the ZELUS expression up(x -. y) will emit a zero when the boolean expression z = y is
true. At the same moment, the boolean expression x < y becomes true, and stays true until y < =
which will be detected the same way by the ZELUS expression up(y -. x).

4.3.2 Disjunction

In ZELUS it is easy to watch for multiple zero-crossings in parallel, but in case we want to compose
the disjunction with other zero-crossings, we need to be able to emit zero when any of two ups
emit zero. This can be done using the ZELUS code visible in Code 5.

In Code 5 we use up(0.0) as an up-expression which will never emit zero. The keywords let
hybrid are the ZELUS way of declaring an hybrid node. The rec keyword signals that the definitions
are mutually recursive.

4.3.3 Conjunction

One difficulty we encounter here is that the “and” needs a memory: when a zero-crossing of one of
the two operands happens, we need to be able to check whether the boolean expression represented

xX<rl'Ax=r2

Figure 9: The water tank system

16

Code 5 cl1 Vv 2

let hybrid zc_or (cl, c2) = zc where
rec tl1 = present cl -> true
else false
and t2 = present c2 -> true
else false
and zc = if t1 then cl
else if t2 then c2
else up(0.0)

by the other one is true. This means that we also need to be able to know when the boolean
expressions that the operands are representing become false.

When the boolean expressions that are represented by both operands stay true for a period of
time (such as z < y), this can be done using the ZELUS code visible in Code 6. If one of them is
only true at a precise instant (such as x = y), then we can use Code 7

Code 6 c1 A ¢2 when cl and c2 are true for a period of time

let hybrid zc_and (clbeg, clend, c2beg, c2end) = ok where
rec tl = present clbeg —> true
| clend -> false
init false
and t2 = present c2beg -> true
| c2end -> false
init false
and ok = if t1 then c2beg
else if t2 then clbeg
else up(0.0)

Code 7 cl A ¢2 where cl is true for a period of time and c2 is true at a precise instant

let hybrid zc_and2 (clbeg, clend, c2) = ok where
rec tl1 = present clbeg -> true
| clend -> false
init false
and ok = if t1 then c2
else up(0.0)

In both Code 6 and 7 the arguments clbeg and c2beg are the up-expressions detecting the
moments when the boolean expressions cl and c2 become true, and clend and c2end are the ones
when they become false.

4.3.4 Conclusion

The boolean expressions we can express using ZELUS' up obey the grammar described in Code 8.
We do not need to be able to express the moment when an expression such as ¢l Ac2 or ¢l V c2

becomes false because every boolean formula can be expressed as a disjunction of conjunctions.
An example result of zero-crossing encoding of a boolean expression is provided in Code 9.

17

Code 8 Boolean expressions expressable using zero-crossings

x ::= Variables (x, y, u, v, ...)
Values (42, 13.37, ...)
o ::= Operators (+, -, *, ...)

=X
| v
| <e> o <e>

<e>
<e>
<e>
<C>
<C>

<e>
<e>
<e>
<C>
<C>

e
<> VvV A

Code 9 Encoding of (x < 1.0 Ay > 2.0) Vz > 3.0

let hybrid bool_expr (x, y) = ok where
rec cl = up(x -. 1.0)
and ncl = up(1.0 -. x)
and c2 = up(2.0 -. y)
and nc2 = up(y -. 2.0)
and ¢3 = up(3.0 -. x)
and ok = or_cond(and_cond(cl, ncl, c2, nc2), c3)

4.4 From hybrid automata to ZELUS code: propositions

The translation of hybrid automata into ZELUS code raises several problems. The expression of
boolean conditions in terms of zero-crossings has been addressed in the previous subsection. The
non-determinism of hybrid automata is another hurdle.

Contrary to hybrid automata the purpose of ZELUS is not to modelize all possible behaviors of
a hybrid system. Since it is a programming language, ZELUS is used to program hybrid systems:
the continuous parts of the system are still modelized but the discrete part is controlled. In other
words, the non-deterministic aspect of hybrid automata, which is essential to their semantics and
their purpose, does not exist in ZELUS. However, it would be “dishonest” to make this translation
a mere choice of a valid trajectory with respect to the hybrid automaton being translated.

For this reason the ZELUS code resulting from the translation should depend on an oracle. The
oracle would be used to be able to execute all the possible valid trajectories for a given hybrid
automaton. By choosing any valid instant to take a control switch, it could select a trajectory
completely randomly or using a particular strategy. For instance a possible strategy would be to
always leave a control mode as soon as a jump condition is satisfied. Using an oracle that we can
control would allow the study of all possible evolutions of an hybrid system. It would make ZELUS
a powerful tool to actually execute and study possible trajectories of a given hybrid automaton, in
order to deduce properties of different evaluation strategies.

Our static analysis of cascades of discrete zero-crossings can also help the translation of hybrid
automata since it allows to chain unless transitions in ZELUS' automata to choose the right initial
state according to the initial values of the real-numbered variables. Instead of choosing and hard-
coding one of the initial states of the hybrid automaton, the ZELUS automaton can choose its initial
state depending on the initial values of the variables, by making a finite non-cycling cascade of initial

18

conditions check, stopping in the first state which for which the initial conditions described by the
corresponding init predicate are satisfied.

5 Conclusion

We found a discrete analysis of ZELUS code which permits verifying that time will not get stuck
when we relax constraints on the language to allow multiple discrete steps to happen between two
continuous phases.

We also started to investigate the translation of hybrid automata into ZELUS code with the
purpose of enabling ZELUS as a tool to study hybrid automata evaluation startegies and properties
of hybrid systems described using the hybrid automata formalism.

In addition to these two works, this internship was the occasion to dive into the research going
on around hybrid systems modelers. This research field is still in very early stage, and there are
plenty of questions that need answers. Regarding ZELUS specifically, several points would need to
be addressed:

o Typing discrete and continuous-time signals. The mix of continous-time and discrete-time
signals must be done such that the behavior does not depend on internal decisions made by
the solver. It essentially amounts at separating expressions into three kinds: combinatorial,
discrete or continuous. An interesting question is the definition of a more expressive expressive
type system able to distinguish piece-wise continuous, piece-wise constant, discrete time signals
and periodically sampled signals. The existing clock calculus of synchronous languages (e.g.,
the one of Lucid Synchrone used in SCADE 6) is a good basis to start with.

o Combination of solvers. Existing modelers use a single numerical solver for approximating
continuous trajectories. Combining several solvers is the right way to achieve both precision
and fast simulation for the whole system. The problem is reminiscent to the problem of
automatic code distribution for synchronous languages. We propose to consider language
annotations in order to define parts which are approximated by the same black-box solver, to
study causality constraints that must be verified between them and to propose a semantics
that deal with multi-solvers.

o Semi explicit DAEs. Tools like Modelica can manage more general implicit (or acausal) models
defined by Differential Algebraic Equations (DAEs). A particular class are semi-explicit DAE
made of an ODE and an algebraic constraint. The goal is to study the combination of semi-
explicit DAE with control structures (hierarchical automata) to express modes. This raises
semantical issues (what is the semantics of the whole language), compilation issues (how to
prepare the code so that it can be linked with existing black-box solvers) and optimization
issues.

19

References

[1] G. Kahn. The Semantics of Simple Language for Parallel Programming, |FIP Congress, 1974
[2] P. Caspi, M. Pouzet. Synchronous Kahn networks, ICFP 1996

[3] P. Caspi, D. Pilaud, N. Halbwachs, J. Plaice. Lustre: A Declarative Language for Programming
Synchronous Systems, POPL 1987.

[4] P. Caspi, M. Pouzet. Lucid Synchrone: une extension fonctionnelle de Lustre, JFLA 1999

[5] A. Benveniste, T. Bourke, B. Caillaud, and M. Pouzet. Non-Standard Semantics of Hybrid
Systems Modelers, JCSS 2012

[6] A. Benveniste, T. Bourke, B. Caillaud, and M. Pouzet. A Hybrid Synchronous Language with
Hierarchical Automata: Static Typing and Translation to Synchronous Code, EMSOFT 2011

[7] A. Benveniste, T. Bourke, B. Caillaud, and M. Pouzet. Divide and recycle: types and compilation
for a hybrid synchronous language, LCTES 2011

[8] A. Benveniste, B. Caillaud, and M. Pouzet. The Fundamentals of Hybrid Systems Modelers,
CDC 2010

[9] E. A. Lee, and H. Zheng. Operational Semantics of Hybrid Systems, HSCC 2005

[10] E. A. Lee, and H. Zheng. Leveraging synchronous language principles for heterogeneous mod-
eling and design of embedded systems, EMSOFT 2007

[11] J.-L. Colago, B. Pagano, and M. Pouzet. A conservative extension of synchronous data-flow
with state machines, EMSOFT 2005

[12] P. Caspi, and M. Pouzet. A Co-iterative Characterization of Synchronous Stream Functions,
ENTCS 1998

[13] P. Cuoq, and M. Pouzet. Modular Causality in a Synchronous Stream Language, ESOP 2001
[14] T.A. Henzinger. The Theory of Hybrid Automata, LICS 1996

[15] T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: A Model Checker for Hybrid Systems,
Software Tools for Technology Transfer 1:110-122, 1997

[16] G. Berry. The constructive semantics of pure Esterel. Draft Version 3, http://www-sop.
inria.fr/meije/Personnel/Gerard.Berry.html, 1999

[17] J. Lygeros. Lecture Notes on Hybrid Systems, Dept. of Electrical and Computer Engineering,
U. of Patras, 2004

[18] E. Abraham. Lecture Notes: Modeling and Analysis of Hybrid Systems, Faculty of Mathematics,
Computer Science, and Natural Sciences RWTH Aachen University, 2012

[19] M. Najafi, and R. Nikoukhah. Implementation of Hybrid Automata in Scicos, |EEE Multi-
Conference on Systems and Control, 2007

20

