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Abstract

Homomorphic cryptography is used when computations are delegated to a third party which is
not trusted with the data, often for privacy concerns. However, the same third party is trusted
with the program, i.e., it is assumed that it will not tamper with the desired sequence of operations
to execute on the encrypted data. In cases when homomorphic cryptography is used to outsource
resources-greedy computations on personal data, for example from a smartphone to the cloud, trusting
the third party with the program is quite bothersome. We aim at providing a simple and cost-
effective way around this problem. By leveraging methods developed to protect embedded asymmetric
cryptography computations against fault injection attacks, we could remove the necessity to trust the
third party with the program, and thus the need to trust the third party at all. Our goals include
the development of a library to ease and automate the use of the proposed method.

Context and Related Work

Delegating computation to a third party is very common nowadays, with the proliferation of small devices
like smartphones and tablets which are mostly terminal interfaces for cloud services. This tendency is
even accelerating. Indeed, a lot of low-power and low-performance devices are now getting connected
since the internet of things is becoming a reality. Most of these devices are made to make people’s life
better, but part of the process is the monitoring of personal user data, for example smartwatches may
collect the position and the level of physical activities of their wearer.

Hence, serious privacy concerns need to be addressed. When data only need to be stored or transmitted
from user to user, classical cryptography (symmetric and asymmetric) can solve the problem. However,
most of the time users’ data have to be processed, e.g., to generate statistics or to compute quantities
that are more informational than the raw values collected by the devices. Homomorphic cryptography
allows users to encrypt their data before they are sent to the cloud for further processing. Computations
can then be performed on the encrypted values, and the result can be sent back to the user who is the
only one able to decrypt it.

While this may be enough to solve the privacy issue (depending on the definition of privacy), it
is not enough for users to be able to fully trust the third party performing the computation on their
homomorphically encrypted data. Indeed, there is no reason to trust the third party with the execution
of the expected sequence of operations.

For the sake of simplicity, imagine the following dummy example:
An insurance company offers multiple options (at different prices) to their clients depending on how well
they want to be covered for weight-related diseases. In order to help their clients to choose the option
that better suit their need, the insurance company offers a service that watches their body mass index
(BMI) over time. BMI = mass

height2 .

However, people do not want their private data such as mass and height to be sent in clear over the
network, nor to be revealed to their insurance company. This is where homomorphic cryptography can
help. Here, users’ devices would send m′ and h′ the homomorphically encrypted values of the users’ mass
and height to the insurance’s cloud service, and classically users would have to trust the insurance to
compute their BMI correctly, and not something like mass+20

height2 which would make the users think they

are overweight and should subscribe to the corresponding, more expensive option.
What we would like to have is trustable homomorphic computations, i.e., to allow users’ devices to

verify that the cloud service has performed the expected sequence of operations on the transmitted values.
And of course we want to be able to do that with the constrained resources of low-resources devices. In
our example it does not really make sense because the BMI computation can always be done locally,
however low the performances of the device are, but in real-world situations dealing with e.g., complex
health or position data, it is important for the verification to be cost-effective.
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There are existing works on the subject [8, 7, 5, 6]. However, these attempts at verifiable delegation of
homomorphic computation are either impractical and/or introduce complex cryptographic constructions
and rely on them. For example, the work of Lai et al. [6], which is the closest to what we want to achieve
ourselves, introduce a new cryptographic primitive called “homomorphic encrypted authenticator”, and
stay at a theoretical level (it does not provide an implementation). We see that as a problem for several
reasons: their complexity hinders their adoption in real products, there is no reference implementation
provided that one could use to implement the scheme in real products, they may be too costly for small
devices, and in addition, these new cryptographic constructions may be broken in the future.

The Proposed Approach

Instead of relying on new and complex cryptographic constructions, we propose to adapt a tried and
tested method from another area of cryptology, namely implementation security against physical attacks.

Indeed, countermeasures against fault injection attacks do just what we want: they verify the in-
tegrity of the computation to make sure that it has not been tampered with. Although the setting is
quite different, it is possible to capture the tampering in both cases using the same formal model (e.g.,
modification of intermediate values, instruction change, etc.), and thus to take advantage of the work
that has already been done in the field of fault injection attacks.
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Figure 1: Sketch of the principle of
modular extension.

One of these countermeasures which have been extensively used
and studied is called modular extension, and consists in lifting the
computation into an over-structure (e.g., an overring Zpr) which
allows to quotient the result of the computation back to the origi-
nal structure (e.g., Fp), as well as quotienting a “checksum” of the
computation to a smaller structure (e.g., Fr). What has just been
described is the direct product of the underlying algebraic struc-
tures. If an equivalent computation is performed in parallel in the
smaller structure, its result can be compared with the checksum
of the main computation. If they are the same, we have a high
confidence in the integrity of the main computation. This protection is sketched in Fig. 1.

A nice property of the modular extension scheme is that the small computations over Fr is entirely
independent from the combined one over Zpr, and can thus be performed on another machine. Hence
the applicability of modular extension to the verification of the integrity of delegated homomorphic
computations.

Modular extension has been successfully ported from CRT-RSA, for which it has originally been
designed by Shamir in 1999 [11], to elliptic curve scalar multiplication [2, 1], and has been formally
studied in both settings [9, 10, 4]: the non-detection probability is provably inversely proportional to the
security parameter r (the size of the small structure).

Although there exists homomorphic schemes that rely on modular arithmetic (such as YASHE [3]),
it is still an open question whether some of them are well suited for modular extension, i.e., if they have
no tests depending on the modular values. If no such scheme exists, the modular extension scheme could
be extended to cover tests on modular values, for example using Lagrangian interpolation polynomial,
which will have to be optimized. Another solution would be to devise a new variant of homomorphic
computation scheme that plays well with modular extension.

After that, the new trustable homomorphic computation scheme will be formally studied, in particular
security-wise with the theoretical probability of not detecting that the homomorphic computation has
been tampered.

Once the theoretical work has been done, modular extension is sufficiently simple in principle to be im-
plemented efficiently in practice, so we will provide a reference library implementing verifiable delegation
of homomorphic computations. This implementation will be used to make performance measurements,
and to verify that the practical probability of non-detection corresponds to what theory predicted.
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