
THC: Practical and Cost-Effective Verification
of Delegated Computation

Pablo Rauzy and Ali Nehme

Université Paris 8, Saint-Denis, France
pr @ up8

·

edu — ali
·

link @ hotmail
·

com

Abstract. Homomorphic cryptography is used when computations are
delegated to an untrusted third-party. However, there is a discrepancy
between the untrustworthiness of the third-party and the silent assump-
tion that it will perform the expected computations on the encrypted
data. This may raise serious privacy concerns, for example when homo-
morphic cryptography is used to outsource resource-greedy computations
on personal data (e.g., from an IoT device to the cloud). In this paper we
show how to cost-effectively verify that the delegated computation corre-
sponds to the expected sequence of operations, thus drastically reducing
the necessary level of trust in the third-party. Our approach is based
on the well-known modular extension scheme: it is transparent for the
third-party and it is not tied to a particular homomorphic cryptosystem
nor depends on newly introduced (and thus less-studied) cryptographic
constructions. We provide a proof-of-concept implementation, THC (for
trustable homomorphic computation), which we use to perform security
and performance analyses. We then demonstrate its practical usability,
in the case of a toy electronic voting system.

1 Introduction

Delegating computation to a third-party is pretty common nowadays, with the
proliferation of small devices like smartphones and tablets which are mostly
terminal interfaces for cloud services. This tendency is even accelerating with
the so-called Internet of Things. Indeed, a lot of low-power and low-performance
devices are now getting connected together and, most of the time, to centralized
and proprietary cloud services. Most of these devices are supposedly made to
make people’s life better, but part of the process is the monitoring of personal
user data, for example smartwatches may collect the location and the level of
physical activities of their wearer.

Hence, serious privacy concerns need to be addressed. When data only need
to be stored or transmitted from the device to the cloud or from a user to another,
classical cryptography (symmetric and asymmetric) can solve the problem. How-
ever, most of the time users’ data have to be processed, e.g., to generate statistics
or to compute quantities that are more informational than the raw values col-
lected by the devices. Homomorphic cryptography allows users to encrypt their
data before they are sent to the cloud for further processing. Computations can

then be performed on the encrypted values, and the result can be sent back to
the users, who are able to decrypt it.

While this may seem to be enough to solve the privacy issue (depending on
the definition of privacy), it is not enough for users to be able to fully trust the
third-party performing the computation on their homomorphically encrypted
data. Indeed, there is no reason to trust the third-party with the execution of
the expected sequence of operations.

For the sake of simplicity, consider this dummy example: an insurance com-
pany offers multiple options (at different prices) to their clients depending (among
other things) on how well they want to be covered for weight-related diseases.
In order to help their clients to choose the option that better suit their need,
the insurance company offers a service that watches their body mass index
(BMI = mass

height2
) over time. However, people do not want their private data

such as mass and height to be sent in clear over the network, nor to be revealed
to their insurance company. This is where homomorphic cryptography can help.
Here, the user’s device would send E(mass) and E(height) the homomorphically
encrypted values of the user’ mass and height to the insurance’s cloud service,
which would perform the BMI computation on the encrypted values and return
it to the user, who would decrypt it and use the information to decide which
insurance plan to choose. In this scenario, the user does not trust the insurance
company with their personal data, but we still assume that the BMI compu-
tation is performed correctly, i.e., the insurance company is trusted with the
computation even if it is not considered trustworthy. Yet, it is in the interest of
the insurance company to sell their more expensive plans, so maybe their service

would instead compute BMI � = E(mass)+20
E(height)2 to influence the user’s choice. . .

From this dummy example, we understand that in order to be able to delegate
computation to an untrusted third-party, we need to have a way to verify the
integrity of the delegated computation results1.

Related works. There are existing works on the subject [14,13,9,10]. However,
these attempts at verifiable delegation of homomorphic computation are either
impractical and/or introduce complex cryptographic constructions and rely on
them. They also require the collaboration of the untrusted third-party, which our
method does not. For example, the work of Lai et al. [10], which is the closest
to what we want to achieve ourselves, introduces a new cryptographic primitive
called “homomorphic encrypted authenticator”, and stays at a theoretical level
(it does not provide an implementation). The lack of practical and usable imple-
mentations of related work to benchmark THC against (for both security and
performance) is a real concern. We believe our implementation2 is an important
contribution in this regard.

1Note that in a real-world IoT situation dealing with e.g., complex health or position
data, it is important for the verification to be cost-effective.

2THC is available at https://code.up8.edu/pablo/thc. It can also be installed
directly with pip3 install thc.

2

https://code.up8.edu/pablo/thc

Contributions. In this paper we present THC, a method to practically and cost-
effectively implement trustable homomorphic computation. Our goal is to provide
a way to verify the integrity of delegated computations generically, in order to
let as much freedom as possible in the choice of the homomorphic cryptosystem
to use. We provide a proof-of-concept implementation2 in Python that we use
to analyze the security and performance of the proposed method. For demon-
stration purpose, we also used our THC implementation to build an electronic
voting system that lets a group of agents organize a secret vote using an un-
trusted third-party server.

Organization of the paper. In the next section, we detail modular extension, the
technique on which THC is based. After that, we present our proof-of-concept im-
plementation in Section 3. We then use it to study the security and performance
of the proposed method respectively in Section 4 and Section 5. In Section 6,
we demonstrate THC in a practical use case by building an electronic voting
system. Finally, we draw conclusions and think of perspectives in Section 7.

2 Modular Extension

Our goal is to be able to verify the integrity of a computation C performed on
our behalf by an untrusted third-party. Of course, the verification has to be
inexpensive compared to carrying out the computation C by ourselves.

There is another area of cryptography where the same problem with the same
constraint exists: implementation security against physical attacks. One kind of
physical attacks consists in injecting fault during the cryptographic computation
(e.g., using an electromagnetic impulse targeted at the processor performing the
computation) in the hope that the intermediate values that are tampered with
(e.g., the content of a register that gets randomized) will influence the final result
of the computation in such a way that will help breaking the cryptography. Such
attacks have been demonstrated to be feasible since 1997 when Boneh et al.
presented the BellCoRe3 attack [3] which essentially reduces the complexity of
retrieving an RSA private key to computing a gcd instead of solving an integer
factorization problem.

In 1999, Shamir presented a countermeasure [18] to the BellCoRe attack.
Shamir’s idea is based on the principle of modular extension (see Fig. 1). It
consists in lifting the computation into an over-structure (e.g., an overring Zpr)
which allows to quotient the result of the computation back to the original
structure (e.g., Fp), as well as quotienting a “checksum” of the computation to a
smaller structure (e.g., Fr). What has just been described is the direct product of
the underlying algebraic structures. If an equivalent computation is performed in
parallel in the smaller structure, its result can be compared with the checksum
of the main computation. If they are the same, we have a high confidence in the
integrity of the main computation.

3The attack is named after the Bell Communication Research labs, where it was
discovered.

3

Fr

Fr

= error

output Fp

false

tr
ue

Fp

Zpr

Fp

Fig. 1: Sketch of the principle of modular extension.

Although it was originally designed to protect CRT-RSA4, the modular ex-
tension scheme has been successfully ported to elliptic curve scalar multiplica-
tion [2,1], and has been formally studied in both settings [15,16,6]: the cost of
the countermeasure is minimal, and the non-detection probability is provably in-
versely proportional to the security parameter r (the size of the small structure).

Getting back to our concerns, a nice property of the modular extension
scheme that, to the best of our knowledge, has not been taken advantage of
yet, is that the “small computation” over Fr can be carried out independently
from the “big computation” over Zpr, and can thus be performed on another
machine entirely.

Hence our main idea: leveraging modular extension to verify the integrity of
delegated homomorphic computations. By doing so, we rely on a well-established
tried-and-tested method rather than introducing novel cryptographic construc-
tion that would still have to withstand the test of time. Implementation is
straightforward: delegate the “big computation” over Zpr, locally perform the
“small computation” over Fr, compare the results modulo r and either return
the verified result of the delegated computation modulo p, or signal an error,
according to the modular extension scheme.

3 THC Implementation

In this section, we present our proof-of-concept implementation of THC. We
have multiple goals with this implementation:

– show that THC is generic: the implementation should be able to work with
any homomorphic cryptosystem as long as its ciphertexts live in a modular
structure such as a field or a ring;

– show that THC is secure: the probability of not detecting an error in the
delegated computation is inversely proportional to the security parameter;

– show that THC is cost-effective: the verification of delegated computations
using THC should be nearly free;

– show that THC is practical : it should be easy to use in a realistic system.

4CRT-RSA is an optimization of RSA using the Chinese Remainder Theorem, which
makes it vulnerable to the BellCoRe attack but is indispensable on low-end devices such
as credit cards (it provides an almost 4× speed-up and allows for security parameters
2× bigger).

4

3.1 The Core

The core of the implementation consists of three classes: the THC implementation
itself, and two interfaces5: HomomorphicCryptosystem and Computation. We
will first present these interfaces and then the THC class.

HomomorphicCryptosystem. This interface requires five methods:
– a constructor, to setup the cryptosystem;
– encrypt, which takes a plaintext as argument and returns a ciphertext;
– decrypt, which does the opposite;
– get modulus, which returns the characteristic of the ring in which the ci-

phertexts live; and
– mod, which applies a modulus to a ciphertext6.

Computation. This interface requires two methods:
– local, which takes a modulus and an array of arguments, performs a com-

putation with them and returns the result modulo the given modulus; and
– remote, which is supposed to query the untrusted third-party to perform

the same computation.

THC. This class is where the modular extension scheme is implemented. Apart
from its constructor, where it is given an HomomorphicCryptosystem instance
H a Computation instance C, and the security parameter r, it has two methods:
– compute, which takes a list of arguments 〈ai〉 and

1. encrypts its arguments:
〈ci〉 ← H.encrypt(〈ai〉),

2. does the remote computation in ZNr (where N is obtained using the
H.get modulus()):
resultNr ← C.remote(Nr, 〈ci〉),

3. does the local computation in Fr:
resultr ← C.local(r, 〈ci mod r〉),

4. verifies the result using the second method:
– verify, which takes resultNr and resultr as arguments and, as per the

modular extension scheme presented in Section 2: compares resultNr mod r
and resultr for equality, then returns H.decrypt(resultNr mod N) if the
comparison succeeds, or returns ⊥ (i.e., False) otherwise.

A trivial example. To explain more clearly how everything interacts and how
THC is used, here is an example of HomomorphicCryptosystem implementa-
tion, which does not actually do any encryption7, followed by an example of
Computation implementation, which allows to instantiate linear polynomials:

5We use the abc Python lib (see https://docs.python.org/3/library/abc.html)
for that, as Python object-model does not natively support abstract classes or inter-
faces.

6This is necessary because some cryptosystems have ciphertexts that are not plain
numbers, e.g., ElGamal uses pairs and the modulus needs to be applied to both elements
independently.

7Remark that it is quite homomorphic nonetheless ;).

5

https://docs.python.org/3/library/abc.html

class Field (HomomorphicCryptosystem):
def __init__ (self , p):

self._p = p
def get_modulus (self):

return self._p
def encrypt (self , m):

return m % self._p
def decrypt (self , c):

return c % self._p
def mod (self , c, mod):

return c % mod

class Linear (Computation):
def __init__ (self , a, b):

self.a = a
self.b = b

def local (self , mod , args):
return (self.a * args [0] + self.b) % mod

def remote (self , mod , args):
c = Cloud.PolynomialAPI () # imaginary
c.compute_in_ring(mod)
return c.linear ([self.a, self.b], args [0])

Given these implementations, the THC class could be used like this, with the
security parameter r = 17:

>>> thc = THC(Field(p=59233) , Linear (42, 51), 17)
>>> y = thc.compute ([2021])

Here, y should be (42 × 2021 + 51) mod 59233, that is 25700. According to
what was explained in Section 2, THC will call the Linear.remote method
with 59233 × 17 as mod and the “encrypted” value of 2021 in args, while the
Linear.local method is called with 17 as mod and the “encrypted” value of
2021 modulo 17 (i.e., 15) in args.

We know that the local computation will return (42×15+51) mod 17 = 1. If
our imaginary Cloud Polynomial API gives a wrong result, its comparison with
the local computation modulo 17 will most likely fail8, and THC will return
False. Otherwise the server returns the expected 84933 which satisfies 84933 ≡ 1
mod 17, so THC will return the results modulo 59233 to give the expected
answer: 25700.

3.2 Homomorphic Cryptosystems

For a given homomorphic cryptosystem to work with THC, the condition is
that its ciphertexts live in a field or ring structure. This constraint still leaves a
lot of choices on the table. To demonstrate the genericity of THC, we chose to
implement four different homomorphic cryptosystems (in addition to the trivial
one we already presented), mostly chosen for their simplicity of implementation:
RSA, ElGamal, Paillier, and HE1. For illustration purpose, we will present the
first two in details, including their implementation code.

RSA. The first cryptosystem we implemented is RSA [17], which is homomor-
phic for multiplications when used without padding (which should really never
be the case when any level of security is required). The implementation of text-
book RSA is quite straightforward (modinv is the modular inverse):

8In real settings, much bigger security parameters are used.

6

class RSA (HomomorphicCryptosystem):
def __init__ (self , p, q, e):

self._N = p * q
self._e = e
self._d = modinv(e, (p - 1) * (q - 1))

def get_modulus (self):
return self._N

def encrypt (self , m):
return pow(m, self._e, self._N)

def decrypt (self , c):
return pow(c, self._d, self._N)

We do not need to implement the mod method as the trivial version is actu-
ally already provided by the HomomorphicCryptosystem base class. We can test
RSA’s homomorphic property in a Python interpreter where rsa is a properly
instantiated RSA object:

>>> c1 , c2 = rsa.encrypt (43), rsa.encrypt (47)
>>> rsa.decrypt(c1 * c2)
2021 # 43 * 47 is 2021

ElGamal. The ElGamal cryptosystem [8] is also homomorphic for multiplica-
tions. In addition to be able to multiply ciphertext, ElGamal can also do scalar
multiplication homomorphically thanks to its malleability. Its implementation
is more complex than that of RSA, but this is an occasion to show that an
HomomorphicCryptosystem implementation can consist of glue code that calls
an existing external cryptographic library (namely PyCryptodome9):

import Crypto.PublicKey.ElGamal as EG
from Crypto.Random.random import StrongRandom as SR
class ElGamal (HomomorphicCryptosystem):

def __init__ (self , p, g, y, x):
self._p = p
self._eg = EG.construct ((p, g, y, x))

def get_modulus (self):
return self._p

def encrypt (self , m):
r = SR.randint(1, self._p - 1)
return self._eg.encrypt(m, r)

def decrypt (self , c):
return self._eg.decrypt(c)

def mod (self , c, mod):
return (c[0] % mod , c[1] % mod)

Since ElGamal ciphertexts are pairs, we also have an example of how the mod
method is used. Again, given a properly instantiated ElGamal object elg in a
Python interpreter, we can test the homomorphic properties of ElGamal:

>>> def scalar_mul (c, k):
... return (c[0], c[1] * k)
>>> def mul (a, b):
... return (a[0] * b[0], a[1] * c[1])
>>> c1 , c2 = elg.encrypt (43), elg.encrypt (47)
>>> elg.decrypt(mul(c1, c2))
2021 # the value of 43 * 47 hasn’t changed
>>> elg.decrypt(scalar_mul(c1 , 10))
430

9Python Cryptography Toolkit, https://www.pycryptodome.org/.

7

https://www.pycryptodome.org/

Paillier. The Paillier cryptosystem [12] can do homomorphic additions (the
product of ciphertexts corresponds to the addition of plaintexts) and thus scalar
multiplication. We will use it in Section 6 to build an electronic voting system.

>>> def add (a, b):
... return a * b
>>> def scalar_mul (c, k):
... return c ** k
>>> ten = pai.encrypt (10)
>>> three = pai.encrypt (3)
>>> pai.decrypt(add(ten , three))
13
>>> pai.decrypt(scalar_mul(ten , 3))
30

HE1. In their 2017 paper [7], Dyer et al. present several variants of their homo-
morphic encryption over the integers. From the initially proposed version HE1,
they derive variants allowing to mitigate brute force guessing attack even if the
inputs distribution has insufficient entropy, and then variants where they add
dimensions to the ciphertexts to enhance security. For our testing purpose, we
chose to implement the initial version presented in the paper, as it is easy to
code and yet allows for homomorphic additions and multiplications at the same
time, enabling to compute any polynomials homomorphically.

>>> a, b = he1.encrypt (11), he1.encrypt (3)
>>> c, d = he1.encrypt (2), he1.encrypt (9)
>>> he1.decrypt(a * b + c * d)
51

4 Security Analysis of THC

Before looking at experimental data, we start with some theoretical background.
In the following, we call delegated computation the one we ask the third-party
to perform, and remote computation the one the third-party actually performs.

4.1 Theoretical background

The goal of THC is to verify the integrity of a delegated computation. As such,
its level of security can be defined as its probability of detecting that the remote
computation has been tampered with. This probability is equal to 1−Pnd, where
Pnd is the probability of non-detection.

The formal study of Pnd is carried out in the third section of Dugardin et
al’̇s paper [6] in the case of single and multiple faults in the computation. The
precise value of Pnd depends on the specific computation that is delegated, but
it is shown that Pnd u 1

r where r is the chosen security parameter. In the
appendices of the same paper the authors predict a theoretical upper-bound of
57
r in practical cases. We will not repeat the full proof here but we are still going

to sketch it below.
Computations that concern us are polynomials (i.e., we can do additions and

multiplications) of the input variables (the ciphertexts that we send to the third-
party). We call P (x1, x2, . . . , xn) the polynomial corresponding to the delegated
computation, where the xi are the input variables. We give the formal name P �

to the remote computation, i.e., the computation of P that might have been

8

tampered with. The polynomials P and P � can differ on everything: constant
terms, like terms, and degree.

Let N be the modulus of the homomorphic cryptosystem we are using.
Let r be our security parameter. Let c1, c2, . . . , cn be the ciphertexts that we
send to the third-party we delegate the computation P to. THC will detect
an error if P �(c1, c2, . . . , cn) 6≡ P (c1, c2, . . . , cn) mod r. That is, errors will not
be detected if and only if: P �(c1, c2, . . . , cn) ≡ P (c1, c2, . . . , cn) mod r, while
P �(c1, c2, . . . , cn) 6≡ P (c1, c2, . . . , cn) mod N . Note that if the second condition
is not fulfilled, there is actually no errors in the result of the computation. Hence,
Pnd is the probability of having P (c1, c2, . . . , cn)−P �(c1, c2, . . . , cn) ≡ 0 mod r.
We call ∆P the polynomial P−P �. For random tampering with the remote com-

putation, we have Pnd = #roots(∆P)
r , where #roots gives the number of roots of

a given polynomial in Fr.
One could argue that a malicious third-party may not randomly tamper with

our computation. However, we recall that due to the modular reduction by r,
the inputs and coefficients of ∆P are effectively randomized. Thus, it is actually
reasonable to consider ∆P ’s coefficients and its inputs to be random and evenly
distributed over Fr, which allows us to conclude that the probability of non-
detection of errors Pnd is indeed inversely proportional to the security
parameter r.

Moreover, in his 2006 paper [11], Leont’ev demonstrates that “the number
of zeros of a random polynomial lying inside the field Fq has, asymptotically as
q → ∞, a Poisson distribution with parameter λ = 1. In particular, a random
polynomial over Fq has “on the average”, as q increases, exactly one root in Fq”.
This means that the proportionality constant #roots(∆P) of Pnd is such that
Pnd ≈ 1

r . In particular, when r is a random 32-bit prime number as it would be
the case in most practical situations, we have that Pnd ≈ 10−9.

Nevertheless, a malicious third-party could retrieve the value of r, e.g., be-
cause in some cases we might need to provide it with the value of Nr, so that the
result of the computation of P does not grow too large, and they obtain r from
that by factorizing Nr. In practice, N is either prime (e.g., in ElGamal) or the
product of two big primes (e.g., in RSA, Paillier, and HE1), and r is prime, but
potentially much smaller, typically it is a randomly chosen 32-bit prime number,
so obtaining r this way is realistic.

In such cases, a malicious third-party could easily tamper with our computa-
tion in an undetected manner. However, it would be limited to adding multiples
of r to the final result of the computation. Indeed, only multiples of r can be
added in P � to bypass THC’s verification. Moreover, we recall that this tam-
pering happens on homomorphically encrypted values. This means that there
is no way for a malicious third-party to perform a precise attack on the actual
(i.e., decrypted) result of the computation without breaking the homomorphic
encryption scheme. In practice, a malicious third-party is thus limited to vandal-
ism. In cases where this vandalism is not obvious once the results are decrypted
(e.g., a proposition getting billions of billions of votes when there are only a few
dozens of participants in the vote), it is still possible to detect it by delegating

9

the same computation twice using different values for r. If both computation
do not return the same seemingly valid result, vandalism is detected. Note that
this strategy requires to retrieve the result of the delegated computation a first
time before delegating the same computation again using a different value for
r. Otherwise, the malicious third-party can tamper with both computations in
the same way by adding a multiple of the product of the two r values (which is
admittedly even more constraining).

Remark that with extremely malleable homomorphic cryptosystems like HE1
which supports scalar additions and multiplications (besides additions and mul-
tiplications between ciphertexts), the decrypted result of an erroneous remote
computation will keep the property of being the actual result of the compu-
tation added to a multiple of r, i.e., ∃k ∈ Z such that D(P �(c1, . . . , cn)) =
D(P (c1, . . . , cn))+kr, where D is our homomorphic decryption function. In such
situations, if r is chosen large enough to be bigger than the biggest expected re-
sult, it is possible to detect errors that bypassed THC’s verification and even to
get the correct result back by reducing the erroneous result modulo r.

4.2 Experimental study

For our experimental study of THC’s security, we wrote several implementations
of Computation specifically for testing and analysis purposes10. These implemen-
tations’ remote method do not actually query a third-party, but rather perform
the same computation as the local method does, except that in order to sim-
ulate a misbehaving third-party, it inserts a random fault in the computation.
Three of these have been used to test the probability of non-detection:

– Product computes the product of its arguments (for RSA, Paillier, HE1);
– PairProduct does the same thing but element-wise on pairs (for ElGamal);
– RandomBinaryPolynomial takes a degree at instantiation and generates a

random binary polynomial of this degree, that we used with HE1.

Each of these computations were tested with random numbers and using ran-
domly chosen r on 2, 4, 8, 16, and 32 bits.

The results are presented in Table 1a. In all cases, the number of missed
error quickly drops as r size increases until it reaches a satisfying 0 when r
is a 32-bit prime. However, we remark that for small r sizes, only the con-
figuration where the HE1 homomorphic cryptosystem is used to perform a
RandomBinaryPolynomial computation (called HE1–poly in the table) corre-
sponds to the theoretically predicted probability of non-detection (i.e., Pnd ≈ 1

r ,
as per Section 4.1). This is actually not so surprising. Indeed, Leont’ev’s re-
sult [11] concerns the number of roots for a random polynomial, which is exactly
what we have in HE1–poly. Moreover, Leont’ev’s result is valid in Fr when
r → ∞, so it is expected that it does not hold for very small r. These experi-
mental results confirm the predicted influence of the security parameter.

10Scripts used to produce and analyze our experimental data are available in our
Python package repository at https://code.up8.edu/pablo/thc.

10

https://code.up8.edu/pablo/thc

T
a
b

le
1
:

E
x
p

er
im

en
ta

l
re

su
lt

s.

E
x
p
e
ri
m
e
n
t

r
si
z
e

(b
it

s)
#
ru

n
s

#
m
is
se

d
ra

ti
o

R
S
A

–
p
ro

d

2
1
0
0
0

8
1
0

0
.8

1
4

1
0
0
0

2
6
9

0
.2

6
9

8
1
0
0
0

3
0

0
.0

3
1
6

5
0
0
0
0

6
0
.0

0
0
1
2

3
2

1
0
0
0
0
0

0
0
.0

E
lG

a
m

a
l–

p
ro

d

2
1
0
0
0

8
9
7

0
.8

9
7

4
1
0
0
0

3
7
2

0
.3

7
2

8
1
0
0
0

5
6

0
.0

5
6

1
6

5
0
0
0
0

8
0
.0

0
0
1
6

3
2

1
0
0
0
0
0

0
0
.0

P
a
il
li
er

–
p
ro

d

2
1
0
0
0

8
9
6

0
.8

9
6

4
1
0
0
0

3
9
5

0
.3

9
5

8
1
0
0
0

1
9

0
.0

1
9

1
6

5
0
0
0
0

6
0
.0

0
0
1
2

3
2

1
0
0
0
0
0

0
0
.0

H
E

1
–
p
ro

d

2
1
0
0
0

9
0
4

0
.9

0
4

4
1
0
0
0

3
8
3

0
.3

8
3

8
1
0
0
0

3
1

0
.0

3
1

1
6

5
0
0
0
0

7
0
.0

0
0
1
4

3
2

1
0
0
0
0
0

0
0
.0

H
E

1
–
p

o
ly

2
1
0
0
0

3
7
6

0
.3

7
6

4
1
0
0
0

5
7

0
.0

5
7

8
1
0
0
0

4
0
.0

0
4

1
6

5
0
0
0
0

1
0
.0

0
0
0
5

3
2

1
0
0
0
0
0

0
0
.0

(a
)

E
x
p

er
im

en
ta

ll
y

o
b
se

rv
ed

se
cu

ri
ty

o
f

T
H

C
.

M
e
a
n

ti
m
e

(µ
s)

in
Z N

in
Z N

r
in

F r
c
o
st

7
7
.1

4
4
±
2
.5
4

7
9
.0

3
6
±
2
.6
5

0
.4

8
5
±
0
.0
3

3
.0

8
%

7
6
.5

7
5
±
2
.3
4

7
8
.5

5
0
±
2
.2
7

0
.4

9
5
±
0
.0
4

3
.2

2
%

7
6
.4

6
5
±
2
.7
2

7
8
.5

7
0
±
2
.4
2

0
.5

6
1
±
0
.0
5

3
.4

9
%

7
6
.5

8
0
±
2
.9
6

7
9
.0

5
2
±
3
.0
3

0
.6

5
5
±
0
.0
6

4
.0

8
%

7
7
.3

8
2
±
3
.4
9

7
9
.3

4
9
±
3
.2
6

0
.7

5
2
±
0
.0
7

3
.5

1
%

1
0
7
.4

0
0
±
5
.0
9

1
0
8
.7

0
5
±
4
.7
4

1
.2

5
7
±
0
.1
4

2
.3

9
%

1
0
7
.3

2
0
±
2
.4
9

1
0
7
.6

8
6
±
2
.7
7

1
.2

3
6
±
0
.0
9

1
.4

9
%

1
0
7
.8

8
5
±
3
.7
4

1
0
8
.9

4
8
±
3
.6
3

1
.4

1
6
±
0
.1
8

2
.3

0
%

1
0
7
.6

6
6
±
4
.2
4

1
0
8
.7

0
9
±
4
.6
4

1
.5

6
3
±
0
.2
0

2
.4

2
%

1
0
9
.0

6
1
±
6
.0
7

1
1
0
.7

7
8
±
6
.1
3

2
.1

6
4
±
0
.2
8

3
.5

6
%

3
0
8
.0

9
4
±
6
8
.9
9

3
0
7
.8

7
6
±
6
7
.7
4

0
.5

1
9
±
0
.1
2

0
.1

0
%

2
6
8
.8

9
7
±
1
6
.1
1

2
6
9
.2

3
8
±
1
5
.2
9

0
.4

6
6
±
0
.0
5

0
.3

0
%

2
6
9
.3

0
8
±
8
.9
6

2
6
9
.6

4
1
±
8
.4
4

0
.5

3
3
±
0
.0
7

0
.3

2
%

2
7
0
.5

5
9
±
1
2
.4
8

2
7
1
.8

7
9
±
1
2
.0
2

0
.6

0
8
±
0
.0
8

0
.7

1
%

2
7
1
.3

2
4
±
1
3
.0
6

2
7
2
.5

4
9
±
1
3
.6
6

0
.7

1
7
±
0
.1
0

0
.7

2
%

1
1
7
.0

8
2
±
2
0
.8
0

1
1
7
.0

5
3
±
2
0
.8
5

0
.6

6
1
±
0
.1
2

0
.5

4
%

1
1
4
.0

5
3
±
2
2
.3
8

1
1
4
.0

3
3
±
2
2
.8
0

0
.6

6
0
±
0
.1
3

0
.5

6
%

1
1
8
.7

4
5
±
2
0
.4
7

1
1
8
.6

1
7
±
2
0
.3
3

0
.7

7
3
±
0
.1
4

0
.5

4
%

1
2
2
.3

5
6
±
1
6
.4
4

1
2
2
.4

5
9
±
1
6
.8
8

0
.9

2
3
±
0
.1
3

0
.8

4
%

1
2
0
.9

5
4
±
1
7
.1
0

1
2
1
.1

0
4
±
1
7
.2
0

1
.0

6
6
±
0
.1
5

1
.0

1
%

5
2
0
.0

2
5
±
1
6
.4
6

5
1
8
.6

0
6
±
1
7
.3
6

3
.5

3
8
±
0
.2
5

0
.4

1
%

5
1
5
.8

7
0
±
4
.6
4

5
1
6
.3

6
8
±
5
.5
7

3
.6

6
6
±
0
.2
0

0
.8

1
%

5
1
7
.4

7
2
±
9
.8
1

5
1
6
.1

6
8
±
1
1
.1
8

4
.1

3
7
±
0
.2
9

0
.5

5
%

5
3
2
.3

3
5
±
3
5
.1
4

5
3
1
.0

2
0
±
3
5
.1
9

5
.1

4
0
±
0
.7
0

0
.7

2
%

5
3
1
.3

7
9
±
2
5
.2
9

5
3
1
.6

8
2
±
2
3
.5
2

6
.3

4
5
±
0
.8
2

1
.2

5
%

(b
)

E
x
p

er
im

en
ta

ll
y

o
b
se

rv
ed

ti
m

e-
co

st
o
f

T
H

C
.

11

5 Performance Analysis of THC

Using THC costs both in additional memory usage and computation time. The
additional memory usage strongly depends on the specific application, but is pre-
cisely predictable. Indeed, for each homomorphically encrypted number, THC
needs to keep its residue modulo r, so the additional memory used correspond
to the number of sensible information that are needed for the delegated compu-
tation multiplied by the size of r.

The additional computation time also depends on r. It is possible to get a
sense of it by observing random computations, using the same settings as in
Section 4.2, except that the “remote” computation does not insert errors10.

The results are presented in Table 1b. For all configurations, N is a 2048-
bit number. Times are expressed in microseconds and are means computed over
1000 × 1000 runs, that is 1000 random computations that are executed 1000
times each in a loop to get something measurable and averaged. Each mean is
accompanied by its standard deviation. These computations were executed on
an Intel® Core� i5-6300U CPU @ 2.40GHz, with Python version 3.7.3.

The cost is defined as the additional time it takes to compute in ZNr instead
of ZN added to the time it takes to perform the local computation in Fr. It is
expressed in percentage of the computation time in ZN .

Note that in most applications, the local computation in Fr can actually be
performed in parallel to the remote computation in ZNr, meaning the time cost
we present is largely overestimated. Indeed, as can be seen in Table 1b, most of
the cost comes from the local computation in Fr. This can be explained by the
fact that the size of N (2048 bits) and Nr (between 2050 and 2080 bits) are very
similar. So much in fact that the standard deviation of the experimental cost is
sometimes bigger than their difference.

These results show that the cost of verifying a delegated computation
using THC is minimal. Indeed, the cost in additional computation time is
on the order of a percent of the unverified computation time, and the cost in
additional memory usage is linear with regard to the number of inputs of the del-
egated computation, with a constant factor depending on the size of the security
parameter (typically 4 bytes). This is particularly encouraging, as computations
delegated on homomorphically encrypted data tend to be expensive, owing to
the size of the ciphertexts.

6 Use Case: Electronic Voting

In this section we sketch an example of THC use case11 to help readers get a
better grasp of both its utility and usability. We start by presenting a scenario,
then a “naive” solution without THC, then we show how to use THC to improve
over this solution. Some explanations are doubled with Python code for clarity.
Note that although the presented code was written for this sole purpose and is
thus extremely simplified, it should still work as expected when executed.

11The demo voting client and server are included in the THC Python package avail-
able at https://code.up8.edu/pablo/thc.

12

https://code.up8.edu/pablo/thc

Scenario. A group of agents wants to organize a vote to make some decisions.
It can be a group of people (e.g., an association or a political group) or it can
be some kind of sensor network that need to make a centralized decision. These
agents have secure means of communication between them so they can securely
exchange information or share a common secret. However, the vote has to be
secret in order to avoid influence bias in the case of a group of people, or to
avoid privacy concerns with regard to the data collected by the sensors (which
may be owned by different people).

To keep each vote secret for all participants, votes are cast to a third-party.
This third-party is an untrusted service provider, typically a voting plateform
in the cloud. It should not be made aware of any participant’s choice, and is
not trusted with the counting of votes either. In addition, participants should
be able to verify that others votes are valid (no cheating).

We will use homomorphic cryptography to ensure that the voting plateform
can store all the votes and count the result without being able to snoop on any
participant’s vote nor on the final result. We will use our proposed trustable
homomorphic computation scheme to ensure the validity of each vote as well as
the integrity of the vote count.

We will see how to implement a cumulative voting system, where each par-
ticipant has a given number of points and freely assign them to each proposition
(or candidates). Cumulative voting is frequently used in federated organizations
to take decision at a federal level, as each of the federated groups usually has a
number of votes that depends non-linearly on its size. We remark that plurality
voting is a particular case of cumulative voting where each participant has a
single point and thus can vote for a single proposition.

Note that a score voting system, where each participant gives a score chosen
among a finite number of possibilities (e.g., an integer between 0 and 10) to each
proposition, can be implemented as an overlay on cumulative voting: it is equiv-
alent to have a plurality vote between the possible scores for each propositions.
Also remark that approval voting is a particular case of score voting where the
score is either 0 or 1.

Threat model. The third-party (1) should not be able to learn about any of the
participants’ vote, (2) should not be able to learn about the result of the votes,
and (3) should not be able to manipulate the votes. Participants can securely
exchange the secret keys that have to be kept secret from the third-party.

Please note that we are not actually trying to build a production-ready elec-
tronic voting system and that we disregard a lot of security details that would
be mandatory for such an application (e.g., making sure it is not possible to vote
twice, or to vote on behalf of someone else without their consent, etc.).

Initial solution. We need to be able to count votes, so a natural choice is to
use the Paillier cryptosystem, which can perform additions homomorphically, to
encrypt the votes. We call Penc and Pdec the encryption and decryption func-
tions of the Paillier cryptosystem. We have that Pdec(Penc(m1) × Penc(m2)) =
m1 + m2 (for easier reading, we omit the private and public key arguments to

13

these functions). We also use a symmetric encryption scheme (E ,D), such that
D(E(m)) = m (again, we omit the secret key).

We call p1, . . . , pn the propositions for a given vote. A ballot is a pair of
the form ((b1, . . . , bn), id) where bi corresponds to the number of votes for pi,
and id uniquely identifies the agent of which it is the ballot. The sum

∑n
i=1 bi

must be less than or equal to the number of votes Vid that the agent id has. For
example, if there are 3 propositions, both ([0, 0, 7], a) and ([1, 2, 3], a) are valid
ballots for a if a has 7 votes, but ([3, 4, 5], a), ([3, 4], a), or ([2, 2, 2, 1], a) are not.
The encrypted version of the ballot (b, id) that is sent to the third-party is the
pair ((c1, . . . , cn), hid) where ci = Penc(bi) and hid = E(id).

For each ballot (c, hid), the third-party can compute the product Chid =∏n
i=1 ci and make it public so that each participant can verify that Pdec(Chid) is

at most equal to the number of votes that the agents identified by id = D(hid)
is supposed to have.

Given the list of all submitted ballots B, the encrypted results of the vote
(r1, r2, . . . , rn) can be computed by the third-party such that ri =

∏#B
j=1 Bj,i,

where Bj,i is the ci of the jth ballot in B. The participants can retrieve the
results of the vote (P1, . . . , Pn) by computing each Pi = Pdec(ri).

Problem. The presented solution is almost sufficient: threats (1) and (2) are
covered by the Paillier cryptosystem. However, threat (3) is still a problem.
Consider the following scenario. A group of people organize a secret vote on the
platform provided by the third-party T . The question is “Should we move away
from T to organize our votes?”, the propositions are “yes” and “no”, and each
participant has one vote. In practice, people who want to chose another voting
platform vote “yes”, i.e. (1, 0), those who want to continue using T vote “no”,
i.e., (0, 1), and those who do not care about the platform either submit a blank
vote, i.e., (0, 0), or do not participate at all.

from thc.crypto.paillier import Paillier
from thc.utils import prime
paillier = Paillier(prime (1024) , prime (1024))
mod = paillier.get_modulus ()
ballots = []
def cast_vote (choice):

if choice == ’yes’:
y, n = paillier.encrypt (1), paillier.encrypt (0)

elif choice == ’no’:
y, n = paillier.encrypt (0), paillier.encrypt (1)

else:
y, n = paillier.encrypt (0), paillier.encrypt (0)

ballots.append ((y, n))

Initially, most people do not really care about the voting platform and many do
not participate in the vote. At some point one person decides to dig into the
subject and discovers that T makes use of analytics and advertisements trackers
on their web interface. This person then decides to loudly campaign in favor
of the “yes”, explaining why using trackers is wrong and how it violates users
privacy. Soon enough, more people participate in the vote.

cast_vote(’yes’), cast_vote(’no’), cast_vote(’blank’)
cast_vote(’no’), cast_vote(’yes’), cast_vote(’no’)
here the campaign for the "yes" happens

14

cast_vote(’yes’), cast_vote(’yes’), cast_vote(’no’)
cast_vote(’yes’), cast_vote(’blank’), cast_vote(’yes’)

Of course it is not possible to know if the campaign convinced them or merely
reminded them about the vote, before it is counted. When the vote is closed the
platform should compute the result on the encrypted data and return it.

from functools import reduce
def result (votes , m):

return reduce(lambda a, b: (a * b) % m, votes)
res_y = result ([b[0] for b in ballots], mod)
res_n = result ([b[1] for b in ballots], mod)

Then, the participants can retrieve the results and decrypt them.

yes , no = paillier.decrypt(res_y), paillier.decrypt(res_n)

In our example, yes is 6 and no is 4: the group decided to move away from T .
However, T heard about the campaign against them and because T is clearly
an evil company, they decide to manipulate the vote to have a better chance of
keeping their users. Instead of taking the all the vote into account as they are,
T replaces all the ballots with copies of ballots randomly chosen among those
they received before the campaign against them happened.

from random import randint
for i in range(len(ballots)):

forged_ballots.append(ballots[randint (0 ,5)])
res_y = result ([b[0] for b in forged_ballots], mod)
res_n = result ([b[1] for b in forged_ballots], mod)

The number of votes stays the same, the Chid for each ballot seems okay (i.e.,
it is either 0 or 1 when decrypted). For the participants, there are no particular
reasons to suspect a manipulation of the vote. Indeed, T cannot know the vote of
any specific person nor the final result thanks to the homomorphic encryption.
However, at least if the campaign for the “yes” was convincing enough, their
manipulation probably biased the results in their favor.

This time, when decrypted by the participants, yes could be 4 and no could
be 7, for example, thereby changing the vote result and the group decision in
favor of T . These results, while manipulated, look totally legit: as explained
before, the campaign for the “yes” may have reminded people to vote without
convincing them.

Using THC. In a parallel universe, the same events happen, except the partic-
ipants of the vote decide to use THC to verify the integrity of the vote count.
At the beginning they choose a small random prime r that they keep along the
other secrets (i.e., the two big primes used for Paillier), then they adapt the
modulus given to T , and they create an instance of THC12.

r = prime (32) # new
mod = paillier.get_modulus () * r # modified
thc = THC(paillier , None , r) # new

They keep track of the residue modulo r of the votes. These are shared among
participants so that any one of them can verify the results.

12Here we will only use the verify method of THC, so a Computation instance is
not necessary. See Section 3.1.

15

ballots_r = [] # new
def cast_vote (choice):

...
ballots_r.append ((y % r, n % r)) # new

When the vote is closed, participants compute the results modulo r on their side.

res_y_r = result ([b[0] for b in ballots_r], r) # new
res_n_r = result ([b[1] for b in ballots_r], r) # new

And when they receive the results from T , they use THC to verify the integrity
of the delegated vote count.

yes , no = thc.verify(res_y , res_y_r), thc.verify(res_n , res_n_r) # modified

This time, if T manipulates the vote, yes and no will be False, otherwise they
will contain the actual result of the vote: threat (3) is no longer a problem.

Note that we do not dwell on it here, but THC could also be used to venify
the integrity of each Chid if thought necessary. More importantly, remark the
practical usability of THC: it only requires a few lines of code on the client
side, and is entirely transparent on the server side.

More problems. Using THC, we significantly reduced the necessary trust in
third-parties to which computations are delegated. However, we are still far
from having removed the necessity of the trust entirely: THC can only verify
the integrity of computational aspects of the delegated data processing. Logical
aspects are left unverified (e.g., in our scenario, if T publishes the list of ballots,
the secrecy of the vote is broken as any participants can decrypt the ballots13).

7 Conclusions and Perspectives

In this paper, we presented a method for verifying the integrity of delegated com-
putations, targeted in particular at delegated computations on homomorphically
encrypted data. We provide an implementation of this method called THC (for
trustable homomorphic computation) that we used to assess the genericity, the
security, and the cost of the method. We also detailed a practical use case.

We showed both in theory and in practice that THC is secure, cost-effective,
and practically usable. Our implementation itself, or any implementation of the
modular extension, can be used in existing code at minimal cost both in terms
of development and run-time resources, thereby reducing the necessary trust in
third-parties to which computations on sensible data are delegated (e.g., cloud
service providers).

Nonetheless, we did not achieve the goal of not having to trust the third-party
at all. Indeed, logical aspects that must be ensured by the third-party cannot
be verified using THC. In the scenario we develop in Section 6 for example, if
the voting platform publishes the encrypted vote count incrementally after each
vote rather than only when the vote is closed, it becomes possible to break the
vote secrecy for anyone who knows when someone else voted.

13Again, we never intended to design a production-ready eletronic voting system
This particular problem could be mitigated using the right cryptographic tools, but is
still relevant to illustrate our point here.

16

A state-of-the-art implementation of homomorphic encryption, TFHE [5],
has been used by the CEA-LIST crypto team to build Cingulata [4], a compiler
that translate arbitrary C++ programs into Boolean circuits that are homo-
morphically evaluated using TFHE. With Cingulata, the logic of the program
is protected by design, as it is embedded into the homomorphically encrypted
circuit to be evaluated by a third-party. However, the third-party could still mess
with the evaluation. Since TFHE ciphertexts live on a torus, which should share
the properties necessary for modular extension, it would be interesting to study
the feasibility of using the THC method to verify the integrity of the evaluation
of delegated Cingulata circuits.

References

1. Baek, Y.J., Vasyltsov, I.: How to Prevent DPA and Fault Attack in a Uni-
fied Way for ECC Scalar Multiplication - Ring Extension Method. In: Infor-
mation Security Practice and Experience (2007), https://sci-hub.tw/10.1007/
978-3-540-72163-5_18

2. Blömer, J., Otto, M., Seifert, J.P.: Sign Change Fault Attacks on Elliptic Curve
Cryptosystems. In: Fault Diagnosis and Tolerance in Cryptography (2006), https:
//eprint.iacr.org/2004/227

3. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the Importance of Checking Crypto-
graphic Protocols for Faults. In: EuroCrypt (1997), https://link.springer.com/
content/pdf/10.1007%2F3-540-69053-0_4.pdf

4. CEA-LIST Crypto Team: Cingulata: a compiler toolchain and RTE for running
C++ programs over encrypted data by means of fully homomorphic encryption
techniques (2018), https://github.com/CEA-LIST/Cingulata

5. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: Fast Fully Homo-
morphic Encryption Library (2016), https://tfhe.github.io/tfhe/

6. Dugardin, M., Guilley, S., Moreau, M., Najm, Z., Rauzy, P.: Using modular exten-
sion to provably protect edwards curves against fault attacks. Cryptology ePrint
Archive, Report 2015/882 (2015), https://eprint.iacr.org/2015/882

7. Dyer, J., Dyer, M.E., Xu, J.: Practical Homomorphic Encryption Over the Integers.
International Journal of Information Security (2017), https://arxiv.org/abs/

1702.07588

8. ElGamal, T.: A Public Key Cryptosystem and a Signature Scheme Based on Dis-
crete Logarithms. In: Advances in Cryptology (1985), https://link.springer.

com/content/pdf/10.1007%2F3-540-39568-7_2.pdf

9. Fiore, D., Gennaro, R., Pastro, V.: Efficiently verifiable computation on encrypted
data. Cryptology ePrint Archive, Report 2014/202 (2014), https://eprint.iacr.
org/2014/202

10. Lai, J., Deng, R., Pang, H., Weng, J.: Verifiable computation on outsourced en-
crypted data. In: Computer Security - ESORICS 2014 (2014), https://link.

springer.com/content/pdf/10.1007%2F978-3-319-11203-9_16.pdf

11. Leont’ev, V.: Roots of random polynomials over a finite field. Mathematical Notes
80(1-2) (2006), https://sci-hub.tw/10.1007/s11006-006-0139-y

12. Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes. In: Advances in Cryptology — EUROCRYPT ’99 (1999), https://link.
springer.com/content/pdf/10.1007%2F3-540-48910-X_16.pdf

17

https://sci-hub.tw/10.1007/978-3-540-72163-5_18
https://sci-hub.tw/10.1007/978-3-540-72163-5_18
https://eprint.iacr.org/2004/227
https://eprint.iacr.org/2004/227
https://link.springer.com/content/pdf/10.1007%2F3-540-69053-0_4.pdf
https://link.springer.com/content/pdf/10.1007%2F3-540-69053-0_4.pdf
https://github.com/CEA-LIST/Cingulata
https://tfhe.github.io/tfhe/
https://eprint.iacr.org/2015/882
https://arxiv.org/abs/1702.07588
https://arxiv.org/abs/1702.07588
https://link.springer.com/content/pdf/10.1007%2F3-540-39568-7_2.pdf
https://link.springer.com/content/pdf/10.1007%2F3-540-39568-7_2.pdf
https://eprint.iacr.org/2014/202
https://eprint.iacr.org/2014/202
https://link.springer.com/content/pdf/10.1007%2F978-3-319-11203-9_16.pdf
https://link.springer.com/content/pdf/10.1007%2F978-3-319-11203-9_16.pdf
https://sci-hub.tw/10.1007/s11006-006-0139-y
https://link.springer.com/content/pdf/10.1007%2F3-540-48910-X_16.pdf
https://link.springer.com/content/pdf/10.1007%2F3-540-48910-X_16.pdf

13. Parno, B., Gentry, C., Howell, J., Raykova, M.: Pinocchio: Nearly practical veri-
fiable computation. Cryptology ePrint Archive, Report 2013/279 (2013), https:
//eprint.iacr.org/2013/279

14. Parno, B., Raykova, M., Vaikuntanathan, V.: How to delegate and verify in pub-
lic: Verifiable computation from attribute-based encryption. Cryptology ePrint
Archive, Report 2011/597 (2011), https://eprint.iacr.org/2011/597

15. Rauzy, P., Guilley, S.: A Formal Proof of Countermeasures Against Fault Injection
Attacks on CRT-RSA. Journal of Cryptographic Engineering (2014), https://

eprint.iacr.org/2013/506

16. Rauzy, P., Guilley, S.: Countermeasures Against High-Order Fault-Injection At-
tacks on CRT-RSA. In: IACR Workshop on Fault Diagnosis and Tolerance in
Cryptography (2014), https://eprint.iacr.org/2014/559

17. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signa-
tures and public-key cryptosystems. Communications of the ACM (1978), https:
//people.csail.mit.edu/rivest/Rsapaper.pdf

18. Shamir, A.: Method and apparatus for protecting public key schemes from timing
and fault attacks (1999), US Patent Number 5,991,415 (https://www.google.com/
patents/US5991415)

18

https://eprint.iacr.org/2013/279
https://eprint.iacr.org/2013/279
https://eprint.iacr.org/2011/597
https://eprint.iacr.org/2013/506
https://eprint.iacr.org/2013/506
https://eprint.iacr.org/2014/559
https://people.csail.mit.edu/rivest/Rsapaper.pdf
https://people.csail.mit.edu/rivest/Rsapaper.pdf
https://www.google.com/patents/US5991415
https://www.google.com/patents/US5991415

	THC: Practical and Cost-Effective Verification of Delegated Computation

