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The security of modern cryptography is based on the impossibility of breaking the implemented
algorithms in practice. In order to reach such a goal, the algorithms are built in such a way
that breaking them in theory is as expensive as doing an exhaustive search on the whole key.
The cryptosystems are made public to ensure a high knowledge of potential attacks and the key
length is selected according to the existing computation power available to prevent any brute
force of the key. The strength of a given algorithm grows exponentially with the length of the
key used.

However, if by any means someone can access some part of the key and test whether he
guessed the correct value of the key, independently from the rest of the key, he would be able to
brute force the key. Indeed, if the size of such parts is small enough, the exhaustive search for
each part will be practically feasible and by repeating the attack on the different parts, the cost
of finding the whole key will grow linearly with the length of the key.

The study of whether it is possible to access small parts of the key or not has been a new
field in cryptographic engineering since the middle of the nineties. This has been made possible
thanks to a class of attacks called Physical Attacks against the implementations of cryptographic
algorithms.

Physical attacks exploit the underlying intrinsic weaknesses of the integrated circuits used
to run the cryptographic algorithms. In the context of cryptographic engineering, two types of
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physical attacks are of special interest. The first one, called Side-Channel Analysis, is based on
the non-invasive measurement of side-channel information (power, electromagnetic, timing, tem-
perature. .. ) leaked during cryptographic computations. The second one, called Fault Attacks,
consists of semi-invasively stressing the integrated circuit running the cryptographic algorithm
(using lasers, clock or power glitches, or electromagnetic pulses, for example) to corrupt the
calculations.

In this chapter, we shall see to what extent physical attacks have been successful so far
in attacking implementations of pairing calculations. Both side-channel and fault attacks are
covered. We also look at the countermeasures that have to be added to pairing calculations to
increase their robustness against such attacks.

12.1 Side-Channel Attacks

The integrated circuits running the cryptographic algorithms are mostly made of transistors
whose switching is directly correlated to the data being manipulated by the circuit. The dif-
ference in the switching activities of transistors when manipulating, say, a ‘0’ or a ‘1" gives rise
to measurable physical characteristics that provide the so-called side-channel information leak-
age. Those measurable physical characteristics can be, for example, timing information, power
consumption, or electromagnetic emissions.

In order to capture the power consumption during the execution of algorithms, a small
resistor is placed in series with the power ground input. The measured power traces can have a
shape, like the time of duration, that depends on the program’s inputs (Figure 12.1).

Kocher, Jaffe, and Jun introduced the power analysis as a means of side-channel attacks
against cryptographic algorithms [39]. The main assumption of a power analysis attack is based
on the fact that the power traces are correlated to the instructions performed by the device.
Thus, studying the power traces can allow us to recover information about the instructions and
data registers, and then about the involved operands.
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FIGURE 12.1 Setup for power analysis.
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Physical side-channel leakage is not restricted to power consumption. The electric current
also generates an electromagnetic (EM) field that can be captured with a small probe placed
close to the part of the targeted circuit. Such a technique has the advantage of allowing an
access restricted to some module (AES or big integer coprocessor, for instance) that limits the
noise induced by uncorrelated operations.

In order to mount such attacks, the device shall be mounted on a dedicated board that has to
be adapted to the form factor of the original target: bank chip card, sim card, secure element of a
smartphone, rfid tag, ... Besides, especially for electromagnetic analysis, some chip preparation
may be required, such as removing the black epoxy and the glue.

12.1.1 Simple Side-Channel Analysis
Timing attacks

Timing attacks were introduced by P. Kocher in 1996 and are the first known example of side-
channel analysis. They are based on the fact that — in a given implementation — some pre-
dictable variation of the computational time may depend on the inputs (and in particular the
secret key).

All ‘basic’ or ‘straight-forward’ implementations of cryptosystems can potentially succumb
to such an attack. For instance, for a scalar ECC multiplication using the “double-and-add”
method, the “add” operation, implemented with the Montgomery technique, may have different
durations (according to the presence — or not — of a final subtraction). Therefore, by partition-
ing the inputs into two sets, the adversary can learn — thanks to the timing attack — whether
this “add” operation is executed or not, and thus deduce the value of a secret key bit.

Note that symmetric algorithms can also be threatened by timing attacks, as illustrated in
[10]. This type of attack is considered to be very powerful, mainly due to its low cost.

In the case of pairing-based cryptography, the Miller loop usually does not contain any condi-
tional operations that depend on the secret data. However, at a lower level, the implementation
may involve a basic operation (for instance, multiplication on a finite field) whose computational
time depends on a secret bit, as highlighted, for instance in [37]. Therefore, timing attacks have
also to be taken into account in the context of pairing-based cryptography. However, the re-
quired countermeasures appear to be the same as those developed to resist DPA-like attacks; we
therefore refer to the sections about DPA.

Simple power analysis

Following Kerckhoff’s principles, one may assume that the implemented cryptographic algorithms
are publicly known. This is a legitimate assumption if we take into account the following facts:
the publication of new algorithms within the cryptography community and the possibility of
analyzing side-channel emissions coming from the algorithms’ executions. Indeed, by looking
at the power or execution trace of an algorithm, one can quickly recognize some patterns, and
figure out which operations are being executed; it is especially true in public key cryptography
where expensive modular operations are usually needed.

But the study of traces of execution is more powerful than simply giving access to the imple-
mented algorithms. Such analyses, referred to as Simple Power Analysis (SPA) (since the first
acquisitions were power consumption traces), are also a threat against weak implementations
whose traces are dependant on the secret value. And this is an actual threat, since straightfor-
ward and fastest implementations won't thwart this dependency. A classic example is the study
of a scalar multiplication [n]P based on the double-and-add algorithm; see Algorithm 12.1. In
this algorithm, we can see that an addition @+ P is only performed if the secret bit n; is equal to
1. So, if the trace of a doubling is different from the trace of the addition — and this is the case
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for the Short-Weierstrass formulae — the attacker will have direct access to the secret scalar n,
which otherwise would have required him or her to solve the discrete logarithm problem.

ALGORITHM 12.1 Double-and-add algorithm.
Input :n=(ni1,...,mp)2and P€ E

Output : [n|P

QP

for i =t — 1 downto 0 do
Q + [2]Q // double
if n; == 1 then

| Q<Q+P // add

end

end

return Ry

Several countermeasures have been proposed in the literature to thwart such attacks. For
the case of scalar multiplications, which is pretty similar to the exponentiation case, the flaw is
twofold: the branch conditionally selected from a secret and also a different implementation of
the doubling and addition operations. This last point also applies to exponentiations that use
optimized modular squaring. Existing countermeasures consist of either solving the flaw or in
changing the algorithm in order to perform a regular flow of operations, independent from the
secret. For the first solution we can cite the atomicity principle [14] and for the second one we
can cite the Montgomery ladder [35] (see Algorithm 12.2). Other solutions exist, but have larger
impacts on the performances (timing) of implemented algorithms.

ALGORITHM 12.2 Montgomery ladder.
Input :n=(n¢1,...,np)2and Pe E
Output : [n|P
R(] «— P
R « [2|P
for i =t — 1 downto 0 do
ben;
Ry < Ry+R;
Rb o [2]Rb

end

return Ry

Besides, the whole security does not rely only on software countermeasures. At the hardware
level, techniques such as clock jitters, additional power noise, dummy cycles, or power filtering
help to increase the resistance against (simple) side-channel analysis.

12.1.2 Advanced Side-Channel Analysis
Differential power analysis

Differential Power Analysis (DPA) was initially defined by Kocher, Jaffe, and Jun [39] to target
the Data Encryption Standard (DES). In the family of differential analysis attacks, we include,
for example, the differential power and electromagnetic attacks. Differential power analysis works
on several power/EM traces that are analyzed using statistical tools, which helps in getting rid
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of variations due to data manipulated, and some noise, which are embarrassing problems in the
case of a single trace.

The principle is to build, for the system under attack, a ‘function’ parameterized by a small
part of the algorithm that we want to attack. The aim is to recover the set ‘function’ correspond-
ing to the secret. For this we acquire a large number of images of the ‘function’ Furthermore,
we construct a theoretical series of corresponding images for each set function. Then we choose
a distinguisher to compare theoretical series and series from the acquisition. There are many
such distinguishers, the main ones being difference of means, correlation coefficient, and mutual
information.

In the case of public key cryptography, most classical DPA attacks target a scalar multipli-
cation operation with the aim of recovering the scalar bits one by one. The description of a DPA
attack against ECC is well introduced in [32].

Assume that the double-and-add method is implemented with one of the regular variants
given in Algorithm 12.1. Let n = (n;_;,...,n9)2 be the scalar multiplier. Suppose that an
attacker already knows the most significant bits, ny_;,...,n;,,. Then, the attacker has to make
a guess on the next bit n;, which is equal to 1. He randomly chooses several points Py,..., P,
and computes Q, = [Ef;j ni2|Psfor1<s<r.

Using a boolean selection function g, the attacker prepares two sets: the first set, Si..,
contains the points P, such that g(Q,) = true and the second set, Sg,., contains those such
that ¢(Q,) = false. Then, a candidate for the selection function may, for example, be the value
of a given bit in the representation of Q,.

Let C*) denote the side-channel information associated to the computation of [n]P, by the

cryptographic device (e.g., the power consumption). If the guess n; == 1 is incorrect then the
difference obtained in Equation 12.1 will be ~ 0.
(C) 1<ecr —(CD) 1<agr - (12.1)
P,ESrue P,EStuine

If the guess is wrong, both sets appear as two random sets, otherwise the guess is correct.
After revealing n;, the remaining bits n;_,, ..., ng are recovered recursively by the same method.

Correlation power analysis

In DPA, the classification of power traces is based on comparing the differences between the
measured traces. Brier, Clavier, and Olivier in 2004 at CHES proposed an improvement of DPA
based on the use of Pearson’s correlation for comparing the measured side-channel traces and a
leakage model based on the Hamming Weight (HW) of the manipulated data.

The side-channel information of the device is supposed to be linear in H(D®R), the Hamming
distance of the data manipulated D, with respect to a reference state R. The linear correlation
factor is used to correlate the side-channel curves with this value H(D & R). The maximum
correlation factor is obtained for the right guess of secret key bits.

Let C be the side channel (power consumption for instance) of the chip; its consumption
model is:

W=upuH(D&R)+v. (12.2)

The correlation factor pc, i between the set of power curves C and values H(D@R) is defined
as: poy = coviC’ lll

The prmclple of the attack is then the following:

e Perform 7 executions on the chip with input data m,,...,m, and collect the corre-

sponding power curves C(V, ..., C"),
e Predict some intermediate data D; as a function of m; and key hypothesis g.
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e Produce the set of the r predicted Hamming distances: {H; z = H(D; @ R),i =
1nsagnth
e Calculate the estimated correlation factor:

iy rY COH, p— Y COY H, p

Pc.H = .
VrE(COR - (CCO2, [fr ¥ HEp — (T Hir)?

When the attacker makes the right guesses for values of the reference state R and secret
leading to data D, the correlation factor p is maximum.

This attack is more powerful than DPA in the sense that the ‘leakage’ peaks are generally
more visible in CPA with the same conditions as in DPA.

(12.3)

12.1.3 Side-Channel Attacks against Pairings

In the case of pairings, side-channel attacks are relevant whenever pairings are used in schemes
involving some secret data, which is typically the case when pairings are used in identity-based
encryption schemes.

The fundamental idea of identity-based encryption is to allow the user’s public key to be a
public function of his identity. This requires a trusted authority (74) that sends him his private
key. This trusted authority creates all the private keys related to an Identity-Based (IB) protocol.
The advantage of IB is to simplify the transmission of public keys while sending the encryption
of a message. Indeed, it is no longer necessary to use certificates or public-key infrastructure
(PKI), since the public key used for encryption can be deterministically (and publicly) deduced
from the identity of the receiver.

The important point during an IB protocol is that the decryption involves a pairing compu-
tation between the private key of the user and a public key. We call the public key the part of
the message used during the pairing calculation involving the secret key. A potential attacker
can know the algorithm used, the number of iterations, and the exponent. The secret is only
one of the arguments of the pairing. The secret key influences neither the time execution nor
the number of iterations of the algorithm, which is different from RSA or ECC protocols.

From here on, the secret will be denoted P and the public parameter (or the point used
by the attacker) Q. We are going to describe a DPA attack against the Miller algorithm. We
restrict this study to the case where the secret is used as the first argument of the pairing. If
the secret is used as the second argument, the same attack can be applied; this assumption is
shown theoretically and practically in [21] and also in [56]. We assume that the algorithm is
implemented on an electronic device such as a smart card and used in a protocol involving IB
cryptography. The attacker can send as many known entries () for the decryption operation of
IBC as he wants, and he can collect the power consumption curves.

Most pairing computations are based on the use of the Miller algorithm. This is in particular
true for the Weil, Tate, and Ate pairings. We assume that the Miller algorithm is implemented in
software running on an electronic device: for example, a smart card. The attacks are performed
during the execution of a cryptographic protocol based on identity. Let @ be the public message.
The private key will be represented by the point P in the computation of the pairing e(P, Q). We
restrict the study to the case where the secret is the first argument of the pairing. Placing the
first secret of the coupling parameter is a first countermeasure against some side-channel attacks
as proposed in [60]. If the secret is the second argument of the pairing, the same attack patterns
may apply and allow us to recover the secret used. The attacker can compute as many times
as necessary pairings between the secret P (that will not change) and inputs @ (that changes
at will). He can record and store the power consumption curves for each of those computations,
together with the final result of the Miller algorithm.
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Description of the attack

When implementing pairings, different coordinate systems may be used. This does not have
any significant impact on the feasibility of side-channel attacks. Indeed, in the Miller loop,
even if the choice of the coordinate system will give rise to different implementations of the
‘lines’ and ‘tangents’ computations, the underlying internal operations will be the same modular
multiplications and additions on long precision numbers.

As described in the general DPA/CPA approach, we try to identify some operations that
involve a secret and a known operand; such operations are in bold in the following equations.
As already explained, there are several ways of implementing the Miller loop. For example,
[60] takes the case of affine coordinates; in this case the line and the tangent equations are the
following.

The line equation is the formula to compute I p(Q), the line passing through T' and P
evaluated in @ is:

Ir.p(Q) = yg —yr — LY (2q — z7).
Tp —ITT

The tangent equation is lr,7(Q), the tangent line through point T evaluated in Q. This
equation is:
3z% +a

2yr

The case for Jacobian coordinates is treated by [21] and [23] with the same aim of targeting
an operation in order to recover one coordinate of the secret input point. If the points are a
three-tuple, then it is necessary to recover a second component. Now we use the elliptic curve
equation to find the last coordinate. The secret point is recovered.

The line and tangent equation in Jacobian coordinates are the following:

lr7(Q) =yq — yr — (xq — z7).

2yQurzt — i erzd + (ypzt — yrzp)(erzrzd — ©2q2%)
2yrzg32

lrp(Q) =

and
(Yqz} — yrzd) — 2q(32F + az})(xq2F — xr2d)
2yrzy.2 ’

2
lrr(Q) = o

The same approach works when in mixed coordinates as described in [21] and [11]. For
optimization reasons it is also possible to mix system coordinates. The equations are available
in [21]. Let T = (X7, Y7, Z7) be a point in Jacobian coordinates, P and @ in affine coordinates,
then the line and tangent equation in mixed coordinates are the following:

In7(Q) = 2yQYrZy — 2Yf — (3X} + aZ1)(z@ 27 — X1)

and
ir.p(Q) = (vq — yp)Zr(Xr — Zzp) — (Yr — Ziyr)(xzq — xp).

Multiplication in F,

We describe the attacks as if we have the embedded degree k = 1, and then the coordinates of Q
being elements of F,. This way, the targeted multiplication Z3z is a multiplication in F,. The
DPA attack also works when k > 1. Even if the multiplication Z%zg becomes a multiplication
between an element of F, and an element of F «, we can consider a multiplication between two
F, elements.

Indeed, zq € Fyx is written: zg = Y 5 zg,€, with (1,€,€2,...,6¥1) a basis of Fu,
and there exists a polynomial R such that deg(R) = k with £ root of R, (R(¢) = 0). Then
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Zizg =Y 50 (23 x 20,) €, is composed of k products in F,. So we can focus on one of these
k products in F, to apply the DPA attack as described.

In the same way, to compute the difference (Z3zg — X), we compute a difference between
elements of F, as in the affine case.

Indeed, if Z3zq = 3 X0 (Zpxg),€ then

Zizg - X = ((Zhzq)y — X) + Y _ Kol (Z3zq)i€'.

Targeting the first iteration in the Miller loop

We describe the attack for the first iteration. It is the simplest case, because we know that for
this iteration, T = P. We can provide the attack for the j** iteration. For this iteration we find
T = [j] P, where [j]P represents the scalar multiplication of point P by the integer j.

We know [, the order of the point @ (as P and @ have the same order). By counting the
number of clock cycles, we can find the number d of iterations we have made before the DPA
attack. Then, reading the binary decomposition of ! directly gives us j. We consider that at the
beginning j = 1, if [, _; = 0 then j < 27, else j < 2j + 1, and we go on, until we arrive at the
(n—1— d)*" bit of I.

If the attack is done during the j** iteration of the Miller algorithm, we find the coordinates
of [j]P. In order to find P, we just have to compute j , the inverse of j modulo I, and then
P = [§]l5]P.

Furthermore, we present the attack against the basic Miller algorithm. The attack can be
straightforwardly generalized to the optimised Miller algorithm given in [38].

Description of the attack

In order to retrieve the secret key P = (Xp,Yp, Zp), the circuit has to be used to perform some
calculations while the power consumption of the physical device is monitored. In particular, the
measurement of the consumed power must be done during a time slot when the circuit calculates
a result that depends on both the secret key and some controllable input data.

For example, we decided to observe the power consumption when the circuit performs the
multiplication between Z2 (a part of the secret key) and z (the input data). This operation
is done during the second control step. To retrieve the second part of the key (Xp), we focused
on the subtraction between the previously performed multiplication and the key.

The DPA attack against the Miller algorithm was first proposed by Page and Vercauteren [44].
Over the years, the proposed schemes have been enhanced. Reference [60] extends the attack to
several other operations and proposes a scheme using CPA. Another remarkable improvement is
proposed by [11], where the authors attack the modular addition and multiplication of elements
in a finite field of large prime characteristics. In this chapter, we present those attacks against
pairings and provide simulation results.

To implement the attack, it is necessary to target an operation in the line or tangent equation.
Let = be the general targeted operator between g € F, and U € E(F,). For instance, g x U can
be g—U; € F,.

The attack scheme proposed against Miller is Algorithm 12.3.

The last part of the key (Yp) can be mathematically inferred from Xp and Z3. Indeed, the
elliptic curve equation E : Y2 = X® + aXZ* + bZ° is a quadratic equation in Yp. The square
root of \/ X}, +aXpZ} + bZY gives us two possibilities for the value of Yp; testing them by an
execution of the Miller algorithm will give the correct coordinates for P.
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ALGORITHM 12.3 A Messerges-style DPA attack to reveal P = (zp,yp) by guessing
yp one bit at a time.

Input :n is the bitlength max of yp

Output : A candidate for the coordinate yp

Set g to 0
for i = 0 upto n — 1 do
Set Sp; and Sy, to empty
Guess the i** bit of g to one
for k =0 upto r — 1 do
Select at random a point U of E
Calculate X = g+ U
Use device to execute e(P,U), collect power signal S
if the i*" bit of X is 1 then
l add Si to Sk;
else
| add Sk to S}o
end
end
Average power signals to get DPA bias D = Sy; — S,
if DPA bias signal has a spike then
| The guess was right: set ¢* bit of g to 1
else
| The guess was wrong: set i*" bit of g to 0
end
end
return g

The practical feasibility of such attacks is illustrated in [56]. The target is an Ate pairing over
BN curves e(P, Q) with P the secret input. The targeted operation is a modular multiplication.
To implement this over long integer (=~ 256 bits), they use the Montgomery method. The device
architecture imposes on the attacker to target 16 bits at time.

12.2 Fault Attacks

In 1984, A. Shamir challenged the cryptography community to find a protocol based on the user’s
identity [51]. This challenge was solved nearly twenty years later by D. Boneh and M. Franklin.
In 2003, D. Boneh and M. Franklin created an identity-based encryption (IBE) scheme based on
pairings [13]. The general scheme of an identity-based encryption is described in [13], and several
protocols based on pairings have been developed since [33]. A feature of identity-based protocols
is that a computation of a pairing involving the private key and the plaintext is performed in
order to decipher a message. A pairing is a bilinear map e taking as inputs two points P and
Q of an elliptic curve. The pairing computation gives the result e(P, Q). Several pairings have
been described in the literature. The Weil and the Tate pairing was developed [54] without
any consideration for the efficiency of the computation. Once pairings were used to construct
protocols, cryptographers sought more efficient algorithms. In chronological order, the Duursma
and Lee algorithm [18], the Eta [8], Ate, twisted Ate [29], optimal pairings [57], and pairing
lattices [28] were invented. Recently, a construction of pairing over a general abelian variety
was proposed in [42]. The latest implementations results [3, 26, 49] of pairing computations are
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fast enough to consider the use of pairing-based protocols in embedded devices. Consequently,
it seems fair to wonder if pairing-based protocols involving a secret are secure against physical
attacks in general, and fault attacks in particular. We focus here on fault attacks against pairing-
based cryptography.

Since 2006, several fault attacks against pairings have been proposed. Here we will present
what are in our opinion the most significant ones. For each attack, we assume that the pairing is
used during an identity-based protocol. The secret point is stored into an embedded electronic
device that can be attacked with fault attacks. The location of the secret is not important in
practice. Indeed, the equations that leak information about the secret can provide information
as to whether the secret is the first or the second parameter. Often, the attack is easier when
the secret is the second parameter. That is why we consider the cases where the first parameter
is the secret argument.

The necessary background in order to understand pairings and IBE is presented in Chapter 1.
The first fault attack against a pairing was proposed by Page and Vercauteren [45] and is
presented in Section 12.2.2. Then, we describe the adaptations of the previous attack against
the Miller algorithm in Section 12.2.2. Whelan and Scott [59] highlighted the fact that pairings
without a final exponentiation are more sensitive to a sign-change fault attack. After that, El
Mrabet [19] generalized the attack of Page and Vercauteren to the Miller algorithm used to
compute all the recent optimizations of pairings. Another method is adopted in [4], based on
instruction skips, and presented in Section 12.2.2. In [40], Lashermes et al. proposed a fault
attack against the final exponentiation during a Tate-like pairing. Their attack is described in
Section 12.2.3. Finally, we conclude the description of fault attack in Section 12.2.4.

12.2.1 What Are Fault Attacks?

The goal of a fault attack is to inject errors during the calculation of an algorithm in order
to reveal sensitive data. At first these attacks required a very precise positioning and expen-
sive equipment to be performed, but now even some cheap equipment allows us to perform
them [27]. The faults can be performed using a laser, an electromagnetic pulse, and power or
clock glitches [16, 17, 36].

The effect of a fault can be permanent, i.e., a modification of a value in memory, or transient,
i.e., a modification of data that is not stored into memory at one precise moment.

At the bit level, a fault can be a bit-flip if the value of a bit is complemented. Or it can be
stuck-at (0 or 1) if the bit modification depends on its value.

The fault cannot only modify the data manipulated but also modify a program’s execution.
As an example in a microcontroller, if a fault occurs on the opcode and modifies it, the executed
instruction will be modified. This method gives rise what is called an instruction skip fault model
where an instruction is skipped by modifying its opcode to a value representing an instruction
without effect (e.g., NOP).

12.2.2 Fault Attacks against the Miller Algorithm

In this section we present the existing attacks against the Miller algorithm. We describe in
Section 12.2.2 an attack against the Duursma and Lee algorithm, since it was the first attack
against a pairing and, more importantly, all the following attacks are constructed on this scheme.
Then, in Section 12.2.2 , we describe the attacks against the Miller algorithm.
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Attacks against the Dursma and Lee algorithm

The Duursma and Lee algorithm is not constructed using the Miller algorithm. But it was
the first implementation of a pairing to be attacked. The attack was developed by Page and
Vercauteren in [45].

Duursma and Lee [18] define a pairing over hyperelliptic curves, and in particular, over
super-singular elliptic curves over finite fields of characteristic 3. For F,; with ¢ = 3™ and k = 6,
suitable curves are defined by

E:y*=z~z+b

with b = +1 € Fs. Let Fs = F,[p]/(p® — p — b) and Fys = Fys[0]/(0? + 1). The distortion map
¢ : E(F,) = E(Fg) is defined by ¢(z,y) = (p — z,0y). Then, with G; = G2 = E(F3») and
G = Fys, Algorithm 12.4 computes an admissible, symmetric pairing.

ALGORITHM 12.4 The Duursma-Lee pairing algorithm.
Input : P = (zp,yp) € Gi and Q = (zq,yq) € Ga.
Output: e(P,Q) € Gs.
fe1
for i = 1 upto m do

zp T, yp ¢ Yp
pzp+rQ+b
A« —ypyqo — p
g A—pp—p?

f+<f-g
1/3 1/3
IQ(—IQ/ ,yQ(—yQ/
end

return 7!

The attack developed by Page and Vercauteren in [45] consists of modifying the number of
iterations during the Duursma and Lee algorithm. The hypotheses to perform the attack are
that

e the two inputs parameters (points P and Q) are fixed, one is secret and the other
public;

e the pairing implementation is public;

e two pairing computations are done, one valid and one faulty.

The analysis of the quotient of the two results gives information about the secret. Indeed, the
quotient of the two results cancel terms that are not influenced by the fault. Firstly, Page and
Vercauteren described how to recover the secret point if the final exponentiation is not performed
(i.e., Line 9 of Algorithm 12.4). Then they explained how to reverse the final exponentiation for
a complete attack.

Attack without the final exponentiation

Let P = (zp,yp) be the secret input during the pairing computation and let @ = (zg,yq)
be selected by the attacker. We consider the Duursma and Lee algorithm without the final
exponentiation (Line 9).
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Let €[A] be the execution of Algorithm 12.4 where the fault replaces the loop bound m
(in Line 2) with A. Then the result of the Duursma and Lee algorithm without the final
exponentiation, instead of being a product of polynomials of the form

gm-itl gm-itt

m
H[(-y%'-yé’x To—(ah+23 4+ - (ch + 23 +b)p—02],
i=1

is a product of the form

m gm—ivt

o — (2% + 23 + b)) — (a3 + 23" m+b)p—p2]

o 3

[(—y‘}; 3

i=1

for a random integer A.
If A = m+ 1, then recovering the secret point P is easy. We have two results

Ry = em|(P,Q)
Ry = em+1(PQ)

where R, is correct and R, is faulty. Let g(;) be the i-th factor of a product produced by the
algorithm. The quotient of the two results produces a single factor,
Imiy = (~¥p  po—(zh  +z2+b)%) - (@5 + 2+ b)p— P

Given that Vz € Fy, 23" = z, the attacker can easily extract zp or yp based on the knowledge
of z¢ and yg.

In practice, the faulty result A cannot be forced to m + 1. It is more realistic to assume
that the fault gives A = m £ 7 for a random unknown integer 7. As a consequence, the attacker
computes two results

Ry = em=7|(PQ)
R, = em=7+1)(PQ),

and once again, considering the quotient, the attacker obtains a single term g(,,+-41)-

In order to apply the same approach, the attacker should discover the exact value of 7.
Indeed, this value is needed to correct the powers of zp, yp, z¢, and yg. As the implementation
of Duursma and Lee algorithm is supposed to be public, the number of operations performed
during the faulty execution leaks the value of 7. Then the attack consists of several faulty
executions of Algorithm 12.4, until we find two results R; and R; satisfying the requirements.
The probability to obtain two values Ry and R after a realistic number of tests was computed

in [19].
The probability to obtain two consecutive numbers after n picks among N integers is
P(n,N)=1- M,
Crin
where
N<0,n>0,B(n,N) = 0,
VN,n=0B(n,N) = 1

B(n,N) YN Y Bn—k,j—2).

For instance, for an 8-bit architecture only 15 tests are needed to obtain a probability larger
than one half, P(15,2%) = 0.56, and only 28 for a probability larger than 0.9.
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Reversing the final exponentiation

The attack described above is efficient without the final exponentiation. But since the final
exponentiation is a part of the Duursma and Lee algorithm, Page and Vercauteren present a
method to reverse it. The problem is that given the result R = e(P, Q) the attacker wants to
recover S, the value obtained in Line 7 of Algorithm 12.4, before the final exponentiation (i.e.,
R=87" 1). Given R, the value of § is only determined up to a non-zero factor in F,s. Indeed,
the Fermat little theorem implies that Ye € F s \ {0}, ¢?"~! = 1. Furthermore, for one solution
S of the equation X a’~1 _ R = 0, all the other solutions are of the form ¢S, for ¢ € F, =\ {0}
At first sight, the attacker would not be able to choose the correct value S among the ¢° — 1
possibilities. However, given the description of the attack, the attacker does not need to reverse
the powering of a full factor, but only a single factor with a special form:

3
R=2=2"="_T %) a1
R, eim=7|(P,Q) Yimzre1)
We want to recover g(,,.1.-41), in order to find the coordinates of the secret point zp and yp:
In order to solve this problem, Page and Vercauteren split it in two:

1. a method to compute one valid root of R = g"s’l for some factor g, and
2. a method to derive the correct value of g from among all possible solutions.

The first problem is solved throughout the method of Lidl and Niederreiter [41] to compute
roots of the linear operator X% — R-X on the vector space Fgo /Fgs. They use a matrix
representation of the problem to find all the solutions of the equation X -1 _R=0, Then,
in order to find the correct root among the ¢* — 1 possibilities, Page and Vercauteren use the
specific form of the factors in the product. Indeed, the terms po and p?c do not appear in the
correct value and this gives a linear system of equations providing the solution. As the method
to reverse the final exponentiation is specific to the Duursma and Lee algorithm, we do not give
the equations. They are presented with examples in [22, 45].

Attacks against the Miller algorithm
A specific sign-change attack

The first attack against the Miller algorithm was developed by Whelan and Scott [59]. They use
the same approach as the attack against Duursma and Lee. They compute two pairing values,
one correct and one faulty. However, the fault is no longer on the Miller loop bound but into the
Miller variable. Whelan and Scott analyze several pairings and study the success of the attack
whether the secret is the point P or Q. They consider the case of the Eta pairing [8]. This pairing
is defined over super-singular curves for small characteristics. Considering the recent result on
the discrete logarithm problem [31] and the fact that the attack is based on the scheme of the
Page and Vercauteren attack, we do not describe it. Whelan and Scott target the Weil pairing.
First they try to describe a general fault model: any fault is injected during any iteration of
the Miller algorithm. The attacker needs to solve a non-linear system and they conclude that
it cannot be done. So they consider a more specific attack: a sign cannot change fault attack
(a single sign bit is flipped [12]). They consider that the attacker modifies the sign of one of
the coordinates of the point P or Q. This attack is the most efficient when exactly the last
iteration of the Miller algorithm is corrupted. They consider the ratio between a valid and a
faulty execution of the Weil pairing, and, using the equations, they obtain a linear system in
the coordinates of the secret point. In this case, the attack is successful. If the fault is injected
earlier in the Miller algorithm, the analysis is more complex, as several square and cubic roots
have to be computed, but possible. Then they consider the Tate pairing. As the Tate pairing is
also constructed using the Miller algorithm, the attack described for the Weil pairing should be
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efficient. However, due to the complex final exponentiation, they conclude that the Tate pairing
is efficiently protected against the sign-change fault they propose.

A general fault attack

In [19], El Mrabet considers a fault attack based on the Page and Vercauteren attack [45].
The fault consists of modifying the number of iterations during the execution of the Miller
algorithm. As the Miller algorithm is the central step for the Weil, the Tate, Ate, twisted Ate,
optimal pairings, and pairing lattices, the fault model is valuable for a wide class of pairings.
However, the attack targets only the Miller algorithm, the final exponentiation is not reversed
cryptanalytically, and the author assumes that another attack could annihilate it. In Section
12.2.3 we describe a recent attack that reverses the final exponentiation. We describe here the
general attack against the Miller algorithm. The difficulty of the attack relates to the resolution
of a non-linear system.

El Mrabet considers that the number of iterations in the Miller algorithm is modified by a
fault attack and denotes 7 the new number of iterations. The value of 7 is random but can
be determined afterwards if the attacker knows the number of iterations, by monitoring the
timing of the computation, for example. The aim is to obtain two consecutive results of Miller’s
algorithm F; p(Q) and Fri1,p(Q). As in the attack on the Duursma and Lee algorithm, we
consider the ratio f"_:;;(it_?(,;.?,) Then an identification in the basis of F « leads to a system that
reveals the secret point.

Without loss of generality, we describe the attack when the embedding degree of the curve
is kK = 4. This allows the description of the equation. As the important point of the method
is the identification of the decomposition in the basis of F«, it is easily applicable when k is
larger than 3. Indeed, k = 3 is the minimal value of the embedding degree for which the system
obtained can be solved. At the 7-th step, the Miller algorithm calculates [j]P. During the
(7 + 1)*" iteration, it calculates [2j]P, and considering the value of the (7 + 1)** bit of log,(r),
it either stops at this moment, or it calculates [2j + 1]P.

Let B = {1,£,/v,£\/v} be the basis of F,; this basis is constructed using tower extensions.
The point P € E(F}) is given in Jacobian coordinates, P = (Xp,Yp, Zp), and the point Q €
E(F,:) is in affine coordinates. As k is even, we can use a classical optimization in pairing-based
cryptography, which consists of using the twisted elliptic curve to write Q = (z,yv/v), with z, y
and v € Fu/2 and /v € F [6]. We will consider here only the case where 741 = 0. The case
where r-;1 =1 can be treated similarly is described in [19]. The non-linear system in the case
7741 = 1 is a bit more complex and must be solved using the discriminant theory.

When Tr41 = 0, we have that FTH.P(Q) - (FT,P(Q))2 X hl(Q)! [J]P = (XJ! Y_'uZJ)1 where
J is obtained by reading the 7 first bits of r and T' = [2j]P = (Xy;, Ya;, Zo;).

Using the equation of h;, we obtain the following equality:

Frinp(Q) = (Frp(Q) x
(22 22y — 2Y} — 3(X; — Z3)(X; + 22)(2 22 - X;)) .

Considering that the secret is the point P, we know j, 7, the coordinates of Q. The Miller
algorithm gives us Fry1 p(Q) and Fr p(Q). We calculate the ratio R = {n—,(rcz(%; Using the
theoretical form of R and its decomposition in the base B, by identification we can obtain, after

simplification, the following system:
Y;Z} = ),
Z(x2-29) =,
3X;(XF - Z}) +2Y7 = Jo,
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where we know the three values Ag 1 2.
The resolution [19] of this non-linear system gives the following equation:

(A2 —9A2)Z12 — (40gA2 + 9A3)Z6 + 4X% = 0.

Solving the equation in Z;, we find at most 24 = 12 x 2 x 1 possible triplets (X, Y}, Z;) for
the coordinates of the point [j]P. Once we have the coordinates of [j]P, to find the possible
points P, we have to find j' the inverse of j modulo r, and then calculate [j'][j]P = [j'j]P = P.
Using the elliptic curve equation, we eliminate triplets that do not lie on E. Then we just have to
perform the Miller algorithm with the remaining points and compare it with the result obtained
with the secret point P. So we recover the secret point P, in the case where 7., = 0. The case

of r,; =1 also leads to a non-linear system that can be solved using a Grobner basis.

Remark 12.1 We present the attack in Jacobian coordinates. As the attack is not dependent
on the system of coordinates, it will be successful for other systems. In [19], the affine, projective,
and Edwards coordinates are also treated. In the paper [58], the authors consider Hessian
coordinates.

Remark 12.2 We describe the attack with the secret point being P. If the secret is the point
Q, the attack is also valid — we just obtain an easier system to solve.

The attack against the Miller algorithm is efficient. A model of the attack was implemented
in [46]. It is fair to wonder if this attack can be applied to a complete pairing. As the Weil pairing
consists of two applications of the Miller algorithm, the Weil pairing is sensitive to this attack.
For the Tate-like pairings (Ate, twisted Ate,...) the final exponentiation must be cancelled for
the attack to be efficient. As the result of the Miller algorithm has no particular form, it seems
difficult to cryptanalytically reverse the final exponentiation. As far as we know, it has not been
done yet. El Mrabet cites several works in microelectronics that would give the result of the
Miller algorithm during a Tate-like pairing computation: for example, the scan attack [61] or
the under-voltage technique [2]. We describe in Section 12.2.3 a recent fault attack against the
final exponentiation.

Attack against the if instruction

In [4], the authors propose a new fault model as well as an implementation of their fault attack.

The if skip fault model

In the Miller algorithm, the addition step is performed or not according to the bits of r. This
decision is usually implemented with an if instruction. If an attacker is able to skip an if
instruction, he can avoid the addition step if he wants to.

This fault model has several advantages. It can target the last iteration only of the Miller
algorithm, and as a consequence only one fault injection is required to find the value h,(Q). This
is better than when altering the counter value, where the attacker had to perform fault attacks
until he finds the faulty result for two consecutive iterations. Then it is not as easy to develop a
countermeasure against it as for an attack on the loop counter. In the latter case, it is enough
to check the number of iterations that the chip executed. In the if skip case, the number of
addition steps is highly dependant on the [ value and can vary even if the security level of the
parameters do not.
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Recovery of h2(Q)

Let Fp(Q) = f? - hi(Q) - h2(Q) be the result of the (correct) Miller algorithm expressed with
the variables of the last iteration.

If an attacker skips the if instruction in the last iteration, he obtains the value Fp(Q)* =
2 m(Q).

With a faulty result and a correct one, he can then compute the ratio

Fp(Q) _ 2 m(Q)-h(Q)
Q- Pm@ @ 124)

Finding the secret with h2(Q). With the value ha(Q), the attacker still has to find the secret
(the point P in our case). The following computations are done for the Tate pairing in particular.
In this case the value r is the order of the groups used in the pairing. As a consequence, in the
last iteration, the equation T = — P holds.

In affine coordinates in the last iteration, with an embedding degree 2, h2(Q) = z¢—zp since
T = —P: the line is the vertical passing through P. So, knowing the value ha(Q), the attacker
can find zp with zg known. Using the elliptic curve equation, two candidates are possible for
the yp value. By trying the two possible input points in the Miller algorithm, he can find yp
with the comparison of these two Miller results and the correct one.

The result in Jacobian coordinates is slightly different. The equations are computed with an
embedding degree 4 and the basis B = {1,£, /v,£\/v}. The point P has Jacobian coordinates
(zp,yp,zp) and Q has coordinates (zq,yo V).

In the last iteration, the simplified value ho(Q) is ho(Q) = 232 — 2p. When the attacker
computes the ratio R = %)—, he finds a value that can be decomposed on the basis B:

R= Ry + Ri€ + Rav/v + Rab\/v.

The decomposition of hs(Q) on the basis B yields the system

Ry = Zhzn (12.5)
R,

2hTqo — Zp, (12.6)

where £ = zgg + 1€

Since @ is known to the attacker, this system can be solved to provide the values zf, and then
zp. There are four possible candidates for the point P, which have to be verified by comparing
them with the correct result of the Miller algorithm.

Remark 12.3 In the case of other pairings (Ate,...), the same attack can be applied. The
main difference is that we find a point multiple of P: AP for a public integer A. Indeed, we
consider that except for the secret point, every detail of the implementation is public.

An implementation of the attack. The authors of this attack [4] implemented their attack
on a chip, an ATmegal28L, with a laser fault injection. They demonstrated the feasibility of
the if instruction skip on a dummy algorithm mimicking the structure of the Miller algorithm.
After locating the right spot for the laser fault injection, they were able to successfully skip an
if instruction.

The if instruction skip has two big advantages. It easily targets a specific iteration in
the Miller algorithm. It is possible to combine it with another instruction skip in the final
exponentiation in order to realize a full attack on the pairing computation algorithm. But this
latter possibility is yet to be proven experimentally.
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Countermeasures

Several countermeasures can be implemented to prevent a fault attack. They are referenced
in [22], and we briefly recall them here. We can preventively use randomization of the inputs
in order to prevent any leakage of information or detect any alteration of the circuit and then
abort the pairing computation.

In order to detect any alteration of the computation we can

e duplicate the computation using bilinerarity: Ry = e(P,Q), Rz = e(aP,bQ) and check
if Ry = R¢® [22];

e check intermediate results during the computation: verify that the points are still on
the elliptic curve, compare the last point T with (r — 1) P [22];

o use fault-resilient counters to avoid attacks focused on changing the Miller loop bound
[43, Section 5.3];

e implement the algorithm to perform a random number of iterations greater than the
correct one [24, Section 4].

The randomization and blinding methods are both based on the bilinearity of pairings:

o choose integers a and bsuch that ab=1 mod (r) and compute e(P, Q) = e(aP, bQ) [45];

o choose a random point R such that S = e(P, R) ! is defined and compute e(P,Q) =
e(P,Q + R)S;

e use the homogeneity property of Jacobian and projective coordinates to represent the
point P;

e use the homogeneity property of Jacobian and projective coordinates to represent the
point @ (with a modification of the equations in the Miller algorithm);

e randomize the input points using a random field element and modify the pairing
algorithm in order to cancel out the effects [53].

12.2.3 A Fault Attack against the Final Exponentiation

The main difficulty faced by fault attacks on the pairing is the final exponentiation. Even if
efficient schemes are able to reverse the Miller algorithm, they still require the attacker to have
access to the result of the Miller algorithm, correct or faulty.

Several possibilities have been proposed to access these values. First, for some exponents
(e.g., ¢° — 1), it is possible to reverse the final exponentiation by using the structure of the
Miller result as shown in [45]. A more implementation-dependent approach has been proposed
in [19], where the authors propose to realize a scan chain attack or to completely override the
final exponentiation, to directly read the result of the Miller algorithm.

Despite having been previously considered unrealistic, multiple fault injections during one
execution of an algorithm seem to be more and more feasible, with some new results in this
direction [55]. This new possibility opens the door to a new scheme, where two fault attacks are
combined: one to reverse the final exponentiation, one to reverse the Miller algorithm.

Until recently, the final exponentiation was thought to be an efficient countermeasure against
the fault attacks on the Miller algorithm, since it is mathematically impossible to find the unique
preimage of the exponentiation and thus the result of the Miller loop. However, in [40], the
authors propose a fault attack to reverse the final exponentiation.

Description of the attack

They chose the case where the embedding degree k = 2d is even, and they attack the final
exponentiation algorithm proposed in [50].
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The exponent is Q and can be decomposed as @ =(p?—-1)- @ If the result of the

Miller algorithm is noted f, we choose the following notation: f = f7*~! and f3 = f;_"—. (fais
the pairing result observed at the end of the computation). Since f € F P £, f2, and f3 satisfy
the relations " 4

=g = =0 (12.7)

These relations show that these intermediary values belong to the groups noted fa € ppay,
and f 3 € lr.

Let Fx = Fe[w]/(w?—v) be the construction rule for the F,« extension field. v is a quadratic
nonresidue in F,« and is a public parameter.

Let fo = g + ho - w with gy, hy € Fye. Then f,‘!;"ﬂ =1 implies g2 —v - h = 1.

First fault

But this equation holds because f; € p,q,,. If an attacker now injects a fault of value e € F
such that the faulty value f; equals

fi=fated e, (12.8)
it is possible to write the fault effect as
f3=(g2+e)+hw, (12.9)

and the value (f; )”"Jrl can be computed by the attacker, since he can measure the value f; and
¥4
)7+ = (£3) Fpe. (12.10)

Moreover,

(g2 +€)* —v-h3
142-e.g+ €%

(e

If the attacker knows the error value e, he can compute
(i) —1-¢
ATy 12.
92 2.¢ 3 ( 2 11)
and deduce the two candidates for hs

2 2 __
W=y TR hy =y (1212)

With one fault, the attacker found the intermediary value f, by checking the two candidates
o C
and comparing (f5) 7 and (f; )7 with fs.

Second fault

At this step, the attacker knows that f3 is the correct result of the pairing computation, and
that the intermediary value is fo. Let f =g+ h-w, f ' =g +H -w, and fo = f7*~1. Then
we note K, the ratio

Do i S O ) (12.13)

In order to recover f, the attacker creates a new fault e; € F,« during the inversion in the
exponentiation by exponent p? — 1.
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Then 3 - )
fe=ft=f-ftad fi=f -(f ' +e). (12.14)

Let Ay, be the difference Ay, = f; — fo = f - ez, Since ez € Fe, Ay, can be written
Ag, = Ay, + Ap, - w with Ay, =ez-gand Ap, = —e2 - h.

As f5 is not in p,e .y with high probability, the attacker can compute (f3 )pd = (f3)" € Fpa.

Here

Il

(92 + A92)2 A (h? + Ah?)z
(g2 +e2-9)2—v-(ha—ex-h)2

(f3y

Il

Using the relation h = —g - K, we obtain
Fed-(1-v-K*)+g-2-e-(ga—v-K-hy))+1—(f3)"=0. (12.15)

This quadratic equation provides two solutions for g, each one giving only one possibility
thanks to K. The attacker has two candidates for f if he knows e,.

If he does not exactly know the fault values but is able to have a limited number of guesses,
he can still find f, easily. But in order to find f he will have to inject more faults similar to the
second one in order to uniquely determine f.

As a conclusion, with a minimum of two separate faults during two executions (plus one
correct execution) of the pairing computation, the attacker is able to reverse the final exponen-
tiation.

A notable fact about this fault attack is that it can be achieved with instruction skip faults.
As a consequence, it is possible to combine it with a fault on the Miller algorithm, if the attacker
can inject two faults in the same execution, in order to achieve a full-pairing fault attack.

A major disadvantage of this attack, making it easy to counter, is that the attacker must
be able to observe f3 = ( fz‘)Ldr'—‘. But often, since f, € p,¢,, is called a unitary element, it
is possible to speed up the final exponentiation computation by replacing the inversions in the
computation of f; by conjugations (which is equivalent to an inversion for unitary elements).
As a consequence, the attacker cannot observe f; in this case and he cannot realize the attack.

12.2.4 Conclusion

‘We presented the vulnerability to fault attacks of pairing algorithms when used in an identity
based protocol. The first attack against Duursma and Lee algorithm targets the number of
iterations. The final exponentiation in this case can be reversed using cryptanalytic equations.
The most efficient pairings are constructed on the Tate model: an execution of the Miller al-
gorithm followed by a final exponentiation. The Miller algorithm and the final exponentiation
were separately submitted to fault attacks. The Miller algorithm was attacked by a modification
of the number of iterations and by the corruption of the if condition during the last iteration.
The final exponentiation was attacked using two “independent” errors in the computation.

For once, it would be interesting to validate all those fault attack schemes on practical
implementations running on an embedded chip. Moreover, in order to attack a whole Tate-like
pairing, further work is necessary. It would be interesting to try to attack, at the same time, the
Miller algorithm and the final exponentiation. We also highlight the fact that a more general
pairing constructed over an algebraic variety is sensitive to a fault attack. As a conclusion, we
can say that the fault attack is a threat against an identity-based protocol, and consequently
any implementation of pairings should be protected against physical attacks.
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TABLE 12.1 Summary of the presented attacks.

Number of
Attack name Target Attack path Fault model faults required
(+ correct execution)
Page and Vercauteren [45] Duursma and Lee algorithm Loop counter Data modification n|P(n, N) > 0.5 (+1)
Whelan and Scott [59] Miller algorithm Sign change Bit-flip
El Mrabet [19] Miller algorithm Loop counter Data modification n P(n, N) > 0.5 (+1)
Bae et al. [4] Miller algorithm 1f skip Instruction skip 1 (+1)
Lashermes et al. L40] Final exponentiation Group change Data modification 2+ (+1)
El Mrabet [20] Pairing on Theta functions Loop counter Data modification 1

In Table 12.1 P(n,N) is the probability to obtain two consecutive numbers after n picks
among N integers (cf Section 12.2.2).

12.3 Countermeasures against Fault Attacks on Pairing-Based
Cryptography

The protection scheme that we present here is based on the technique of rmodular eztension, which
was introduced by Shamir along with the first software countermeasure against fault injection at-
tacks on CRT-RSA [52]. Joye, Paillier, and Yen noticed, two years later in [34], that the same pro-
tection could extend to any modular function. Since then, many countermeasures based on mod-
ular extension have been developed for CRT-RSA, and the method made its way to elliptic curve
cryptography (ECC). In particular, Blémer, Otto, and Seifert [12], and Baek and Vasyltsov [5]
applied this protection method to elliptic curve scalar multiplication (ECSM). More recently,
Rauzy, Moreau, Guilley, and Najm [48] have formally studied the protection of ECSM compu-
tations with the modular extension method. We here extend it to pairing-based cryptography.

12.3.1 Modular Extension

The general idea of modular extension is to lift the computation into an over-structure (e.g.,
an overring) which allows us to quotient the result of the computation back to the original
structure, as well as quotienting a “checksum” of the computation to a smaller structure. What
has just been described (the original structure and the smaller structure) is the direct product
of the underlying algebraic structures. If an equivalent computation is performed in parallel in
the smaller structure, its result can be compared with the checksum of the main computation.
If they are the same, we have a high confidence in the integrity of the main computation. This
protection is sketched in Figure 12.2.

The confidence degree depends directly on the size of the smaller structure, which is thus a
security parameter: the larger it is, the less probable it is to have an unwanted collision, but
the more costly the redundancy will be. Indeed, the fault non-detection probability (P, 4) is
inversely proportional to the size of the small structure.

When the basic structure underlying the original computation is a field, as is the case in
pairing-based cryptography (contrary to, e.g., RSA, which only requires a ring), a problem arises
with inversions. Indeed, if we call F,, the original structure and F, the smaller one, the nonzero
elements of their direct product Z,, do not all have an inverse. Nonetheless, this problem can

be circumvented.
F, 3
Zyr < . » output F,
F,< F, K: ‘\i
error
F. false

FIGURE 12.2 Sketch of the principle of modular extension.
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PROPOSITION 12.1 To get the inverse of z in F,, while computing in Z,,, one has:
e z=0modr => (2 2 mod pr)=2z""
1

mod p,
e otherwise (7' mod pr) =z~ mod p.

Remark 12.4 Goli¢ and Tymen introduce in [25] a masking countermeasure of the Advanced
Encryption Standard (AES [1]), called the “embedded multiplicative masking”, which also re-
quires embedding a finite field into a larger ring. In this context, the over-structure is a poly-
nornial extension of some extension of Fy, but the idea is similar to modular eztension. In
particular, the authors note in Section 5.1 of their paper [25] that inversion in the base field can
be obtained in the overring as an exponentiation to the base field order minus two.

But the inversion procedure we give in Proposition 12.1 is novel, in that we allow an op-
timization if the number is inversible in the overring. This requires a test, which we can do
safely without disclosing information in the context of fault-attacks detection. Nonetheless, such
optimization would be insecure in the context of the “embedded multiplicative masking” coun-
termeasure, since this would leak information about the value of the mask. This is a first-order
flaw that would undermine the security of the “embedded multiplicative masking” protection
against side-channel attacks.

In addition, it is possible to write pairing algorithms that use very few divisions (as little as
a single one in our mini-pairing implementation; see hereafter in Section 12.3.3).

12.3.2 Other Existing Countermeasures

We review the three known methods to apply and/or adapt the modular extension countermea-
sure to ECSM (which is central to pairing-based cryptography).

In [12], Blomer, Otto, and Seifert (BOS) suggest applying the modular extension counter-
measure by replacing finite fields and rings with elliptic curves over finite fields and rings. Let
us denote the nominal elliptic curve as E(F,). Then the protection by BOS consists in achiev-
ing the same computation, but on a larger elliptic curve E(Z,,), and on a small elliptic curve
E(F.). According to the authors, the reduction of the result of the ECSM on E(Z,,) modulo
r should yield exactly the result of the ECSM on E(F,). If not, then an error is suspected,
otherwise the result of the ECSM on E(Z,,) is reduced modulo p, which should be the correct
result. The rationale of BOS is illustrated in Figure 12.3. Apart from the lacunar manage-
ment of inversions in Z,,, one other caveat is pinpointed in [48, § 3.1]. Due to the existence
of unrelated tests (e.g., equality of intermediate points to the point at infinity) on E(Z,.) and
E(F,), the algorithm proposed by BOS is incorrect, meaning that it can return an error when
there has been none. These false positives are harmful in that they leak information on the
scalar.

In [5], Baek and Vasyltsov (BV) present an optimization of BOS. The idea is to avoid the
computation on E(F,), but to trade it for a verification that the ECSM result on E(Z,) modulo
r belongs to E(F,), i.e., that it satisfies its Weierstrass equation taken modulo r. The rationale
of BV is illustrated in Figure 12.4: notice that in this figure, the security parameter r is chosen
to be a prime. This was not mandated in the original BV publication, but shall definitely be
preferred for the countermeasure to have reasonable detection probability. The BV protection is
more efficient than BOS, since the verification of BV is, computationally speaking, easier than
an ECSM on E(F,) (even if the scalar is reduced modulo the order of the small curve E(F,)).
Besides, to avoid dealing with inversions in Z,,, BV is executed in projective coordinates, the
projective-to-affine conversion only being carried out after the integrity verification. Still, BV
runs into the problem of inconsistent tests before elliptic curves point addition and doubling.
The consequence is that, depending on the scalar (and the fixed generator point), the “virtual”
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FIGURE 12.3 Principle of protection of ECSM against fault attacks by BOS [12].

= [k]P output @, mod p
1n E(Z \
Qpr mod 7 error
€ E(F,)? @m
FIGURE 12.4 Principle of protection of ECSM against fault attacks by BV [5].

computation on E(F;) (the modulo r of computation on the embedding elliptic curve E(Z,,))
can be stuck at the point at infinity.

In [48], Rauzy, Moreau, Guilley, and Najm (RMGN) notice that the tests’ inconsistencies on
E(F,) can also be security weaknesses. Indeed, when the mirror computation on E(F,) is stuck
at the point at infinity, most faults (for instance, faults touching only one of three projective
coordinates) are undetected, because the computation naturally brings the intermediate point
at the point at infinity on E(F,) (and to a point with coordinates that are null modulo r on
E(Z,,)). Thus, the probability of fault non-detection is increased with respect to the expected
O(1/r). Consequently, RMGN propose a straightforward application of the modular extension
method (as suggested by Joye, Paillier, and Yen [34]) to ECSM, where all tests on points are
simply removed. From a functional point of view, this does not raise an issue, as in practice
scalars are chosen to be smaller than the base point order, so that tests can be safely skipped.
The pro is that this method is correct (it has no false positives), but the con is that some faults
are undetected (the behavior is identical to that of BV). Indeed, even though in RMGN there is
no notion of elliptic curve E(F,), the values in F, can be stuck at 0 (though we can still detect
those faulty cases beforehand by comparing the order of F, with the scalar). However, as in
the case of BV, the increase of fault non-detection probability is limited, and can be tolerated
with large enough values of 7 (e.g., 32-bit values). Indeed, as detailed in [48, Proposition 7 in
Sec. 6.3], the probability of fault non-detection remains O(%)

12.3.3 Walk through Mini-Pairing

As an example of the modular extension protection scheme that we present here, we provide both
an unprotected and a protected implementations of the optimal Ate pairing that we call “mini-
pairing”* The provided code has been implemented in C using the GMP big number library,
more precisely mini-gmp, a portable version of GMP with a reduced number of functions. The
parameters of the optimal Ate pairing we used are presented in Figure 12.5.

The protected version of the optimal Ate pairing is given in Algorithm 12.5.

Here we discuss the differences between the unprotected and the protected mini-pairing im-
plementations. Indeed, for the sake of simplicity, we emphasize our comments on the necessary
code modifications to implement the modular extension protection scheme, rather than focus-
ing on the underlying algorithm, namely an optimal Ate pairing. For the same reasons, the
implementation has not been optimized.

*The code is available here: http://pablo.rauzy.name/research/sources/hopbc_mini-pairing.tgz.
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FIGURE 12.5 Parameters of mini-pairing.

ALGORITHM 12.5 Optimal Ate pairing capable of detecting faults (using entangle-
ment strategy).

let p,r be two primes, and F,, F, two fields with p and r elements
let Zy, be the direct product ofq F, and F,.
let G1,G2 be two additive cyclic groups of prime order p
let e be the pairing mapping G; and G2
let P€ Gy and Q € G2
compute ez, = e(P,Q) in Zy
compute er, = e(P,Q) in F,
if ex, = ez, mod r then
| return e(P,Q) = ez, modp
else
| return error

end

The first modification is obviously the addition of variables that store newly needed values,
such as the security parameter r (lines 1314 and 1315 at the beginning of the main function
in mini-pairing_protected.c). Then, the main change induced by the protection is that the
pairing algorithm is now called twice: once in Z,,, and once in F,.. Following these computations,
we need to check whether the redundancy invariant held, i.e., to test whether both outputs are
equal modulo . Two additional functions are defined for this purpose: one to compare two
elements of Fr.12 (p12_is_eq, lines 1241 to 1308 of mini-pairing_protected.c), and another to
cast an element from Z,,):2» to Fraz (p12in, lines 1180 to 1239 of mini-pairing_protected.c).
The redundancy check and error display (if need be) are then performed at line 1365.

Another difference is in the inversion (lines 316 to 324 of mini-pairing_protected.c).
Inversions seldom occur in this pairing algorithm; however, it will fail if the input number is a
multiple of 7 in Z,,. In such a case, we simulate an inversion in F,, (which is what we actually
need) by exponentiating to p—2, as explained in Proposition 12.1. Computing an exponentiation
is more costly than computing an inversion with an extended Euclidean algorithm. But there are
few enough occurrences of this case in practice that this workaround does not have a significant
impact on the execution time.

12.3.4 Overhead

Here we present the cost of the countermeasure as deployed in our mini-pairing implementation.
Note that for the sake of simplicity and clarity, the implementation is not optimized and is thus
quite slow. However, the overhead factor is still relevant, since optimizations of the pairing
algorithm would directly benefit the protected version as we constructed it (see Section 12.3.3).
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TABLE 12.2 Performance for mini-pairing on an ARM Cortex-M4 pc.

¥y time (ms)
Miller’s loop  intermediate computations  final exponentiation sum

4160 621 6519 11343

TABLE 12.3 Modular extension performance for mini-pairing on an ARM Cortex-M4 uc.

total over-

r size - time (ms)
FE sum (ms) head

z F,. time (ms)
(vity | ML fC ic  FE

sum ‘ ML

8 4576 703 7201 12443 | 1186 142 1781 3105 | 15587 | x1.37
16 4617 706 7263 12546 | 1185 141 1777 3097 | 15685 | x1.38
32 4706 725 7407 12864 | 1042 126 1565 2726 | 15590 | x1.37
64 5260 834 8302 14334 | 1370 171 2071 3618 | 17984 x1.59

ML = Miller’s loop, IC = intermediate computations, FE = final exponentiation.

Speed

Times are measured on an ARM Cortex-M4 microcontroller. Table 12.2 gives the timing
of the unprotected implementation that serves as reference to compute the overheads given in
Table 12.3. Table 12.3 presents the cost of the countermeasure for different sizes of the security
parameter r, using the largest prime number of each size.

Table 12.3 shows the good performance results of the modular extension protection scheme.
We can see that when 7 is on 32 bits, the alignment with int makes mini-gmp faster, incurring
a factor of only &~ 1.37 in the total run time compared to the unprotected algorithm, similar to
the cost with r on 8 bits but with a much higher resistance.

Space

Table 12.4 shows the cost of the countermeasure in terms of code size, both for the program-
mer (in number of lines of C code), and for the hardware (in kilobytes of executable code and
in bytes of occupied memory). Note that the executable code size also accounts for embedded
libraries such as mini-gmp.

In order to measure the RAM usage, the maximal value of the heap pointer address is
monitored. This is achieved by equipping the _sbrk() function, located in syscall.c, which is
called by malloc() and free(). Notice that most of the RAM is indeed used by the heap (and
not the stack), because in the ECSM code, all parameters are passed by address, and there are
neither recursive functions nor pre-initialized tables (but for the elliptic curve parameters).

As expected, we can see in Table 12.4 that the implementation of the modular extension
countermeasure is cheap in terms of engineering: less than 150 additional lines of code (for a
total of almost 1400 lines); as well as in terms of resources: the executable code is only marginally
larger, and memory usage is essentially the same (probably due to the way mini~-gmp’s and libC
memory allocation works).

TABLE 12.4 Modular extension cost in terms of space for mini-pairing on an ARM Cortex-M4 puc.

implementation  code size (LoC)  executable size (B)  occupied RAM (kB)

unprotected 1404 95032 = 20
protected 1545 (+141) 96832 (+1800) ~ 20
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12.3.5 Security Evaluation

DEFINITION 12.1 (Fault model) We consider an attacker who is able to fault data by
randomizing or zeroing any intermediate variable, and fault code by skipping any number of
consecutive instructions.

DEFINITION 12.2 (Attack order) We call order of the attack the number of faults (in the
sense of Definition 12.1) injected during the target execution.

Remark 12.5 In the rest of this section, we focus on the resistance to first-order attacks on
data. Indeed, Rauzy and Guilley have shown in [47] that it is possible to adapt the modular
extension protection scheme to resist attacks of order D for any D by chaining D repetitions of
the final check in a way that forces each repetition of the modular extension invariant verification
to be faulted independently, and faults on the code can be formally captured (simulated) by faults
on intermediate variables.

The security provided by the modular extension protection scheme has been formally studied
in [48, § 5]. Although the practical study was carried out on an ECSM algorithm, the theoret-
ical results are still valid in the context of pairing algorithms (or actually any other modular
arithmetic computations): the probability of not detecting a fault P, 4. is inversely proportional
to the security parameter r, i.e., P, a = O(})

Indeed, we consider that a fault might be exploitable as soon as the algorithm outputs a value
that is different from the expected result in absence of faults. In the modular extension setting,
this can happen if and only if the result of the computation in Z,,:2 is equal to the result of
the computation in F,.12 modulo r, while being different from the expected result modulo p. The
probability of this happening is 1 if we consider that values in F,. are uniformly distributed, which
is quite reasonable given that r < p. As a matter of fact, we can quantify this distribution.
Let U uniformly distributed in {0,...,p — 1}, then V = U mod r has a piecewise constant
distribution. Let v in {0,...,r — 1}, we have:

ire i
- {fEe0 £r<Goan

pitr 2
There are other vulnerabilities, but they do not alter P, 4. For instance, the final exponentiation
always returns 0 in F,.2 for some (small) values of 7. In addition, Miller’s algorithm manipulates
an element from an elliptic curve on F,2, and if a fault manages to set the ¥ coordinate of that
element to 0 mod r, its other coordinates will also become multiples of r after few iterations of
the Miller's loop, thereby “infecting” the computation by being completely equal to 0 modulo
r. Therefore, the exponentiation will also output 0 modulo 7 in Z,, )12, and the final test won’t
detect the fault. However, such faults are highly unlikely in practice, the probability being
roughly ;‘-Ar, which is why P, 4 stays O(1). Anyway, it is advised to use large enough values
for the security parameter r. In practice, 32-bits values are recommended as they are large
enough to offer a good security while not being big enough for the overhead induced by the
countermeasure to be prohibitive (see Table 12.3). It is also advised to use prime numbers for r
as it will diminish the probability of occurrence of the inversion problem mentioned above.

Remark 12.6 One must also be careful with the choice of parameters. For instance, manip-
ulating a P whose coordinates are multiples of 7 might lead to singularities in the computation
in F,., singularities such as the F,iz-output being equal to 1, therefore making the pairing com-
putation more vulnerable to fault injections.
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Remark 12.7 Taking the BV fault detection as an example (recall Figure 12.4), one might be
tempted to lift the computation from F;. to Z,,, and do a sanity check of the pairing computation
instead of redoing a redundant pairing computation in F,.. One property that could be checked is
the bilinearity. Unfortunately, the elliptic curve changes modulo r, as the Weierstrass coefficients
are reduced modulo r. Therefore, the bilinearity remarkable identity is not preserved in F, after
reducing the pairing computation from Z,, modulo r.

The presented countermeasure can also bring a reasonable security against simple side-
channel attacks. Indeed, the 32-bits r parameter can be chosen randomly, and there are 98182657
prime numbers between 2*' and 2°2, hence providing many different possible execution traces
against power analysis.

12.4 Countermeasures against Side-Channel Attacks on
Pairing-Based Cryptography

In order to protect pairing implementations against the side-channel attacks described in this
chapter, several countermeasures have been proposed. The aim of most of those countermeasures
is to avoid any predictable link between the manipulated data and the known input.

In practice, in the pairing computation context, there are different randomization levels. One
category of countermeasures consists of randomizing the inputs before the pairing computation.
Another one consists of adding a random mask directly into the Miller algorithm. Moreover, a
method based on arithmetic randomization can be adapted for the pairing.

12.4.1 Randomization of the Inputs

Page and Vercauteren [44] proposed two countermeasures for their passive attack. The first one
is based on the pairing bilinearity. Let a and b be two random values, then e([a]P, [b)Q)7 =
e(P,Q). For each pairing computation, one can thus take different a and b and compute
e([a]P, [b]Q)7*. This method is clearly very costly in terms of computation time. Then, the
random choice for @ and b can be adapted to have a = b~ ' mod g, so the exponent 5 is equal
to 1.

The same authors propose another method, for instance in the case where P is secret, con-
sisting of adding the mask to the point @ in the following way: select a random point R € G2
and compute e(P, Q + R)e(P, R) ! instead of e(P, Q), with different values of R at every call to
e.

Widely inspired by the previous protection, Blomer et al. in [11] proposed an improvement
applied for the Tate pairing. In the reduced Tatc pairing, they note that the set of the second
argument input is the equivalence class WLF They hence choose a random point R € E(F )

with order [ and coprime to 7. Then Q + R Q. Hence ¢(P,Q + R) = e(P,Q). This method
avoids the second pairing computation that is used to find the same result without mask.

12.4.2 Randomization of Intermediate Variables

Kim et al. [37] use the third countermeasure proposed by Coron in [15], using random projective
coordinates to protect the Eta pairing in characteristic 2. But it can be adapted to pairing
algorithms based over a large prime characteristic field. At the beginning of the algorithm, they
proceed with this randomization based on the homogeneity of projective or Jacobian coordinates.
For non-zero integer A, the point P = (Xp,Yp, Zp) in projective coordinates is also the point

= (AXp,AYp,AZp). The point P = (Xp,Yp, Zp) in Jacobian coordinates is also the point
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P= (A2Xp, 1\3Yp, AZp).

12.4.3 Arithmetic Randomization

However, all previous attacks against pairings targeted an arithmetic operation. Securing multi-
plications was originally studied in [30] in order to protect ECDSA against side-channel attacks.
The aim is to avoid all possible predictions during a modular multiplication. A mask is randomly
chosen before processing a multiplication. Then it is impossible to make any hypothesis on the
output of internal modular multiplication. We find another masking technique in the paper [9],
the aim being the same: avoiding any predictable link between known and secret data directly
in the arithmetic.

Protected arithmetic can also be obtained with the well-known Residue Number System
method [7].

Arithmetic protection seems to be a robust method against side-channel. However, it is nec-
essary to evaluate the overhead cost. Indeed, changing permutation in randomized multiplication
or refreshing RNS basis in case of RNS implementation have a significant overhead.

12.4.4 Countermeasures against Loop Reduction

The fault attacks against the Miller algorithm rely on the modification of the number of iterations
performed by the algorithm. We can add a counter to the Miller algorithm.

12.4.5 Pseudo Code of Unified Existing Countermeasures

A set of these protections is relatively easy to implement. Algorithm 12.6 shows a possible
combination of existing countermeasures. The arithmetic randomization is directly implemented
in the arithmetic. For example, the multiplication of two long integers in F, can be realized by
Algorithm 2 of [9] instead of classic long integer multiplication.

ALGORITHM 12.6 Computation of pairing using Miller’s loop.
Input : P € Gy, Q € Gy with @ secret, r = (ry-1...79)2 radix 2 representation
Output : e(P,Q)

Randomly pick a and b in {1,...,¢g — 1} such that a =b"! mod ¢

Set P’ « [a]P and Q' + [b]Q // Randomization of the inputs
Randomly pick A € F

Set T + (Azp:, Aypr, A) // Randomized projective coordinates
f+1

for i = w — 2 downto 0 do
[ (@)
T+ [2]T
if r; ==1 then
[+ flrp(Q)
T+ T+P
end
end

ke
=1
return f +
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