
Countermeasures Against High-Order
Fault-Injection Attacks on CRT-RSA

Pablo Rauzy
rauzy@enst.fr

pablo.rauzy.name

Sylvain Guilley
guilley@enst.fr

perso.enst.fr/∼guilley

TelecomParisTech
CNRS LTCI / COMELEC / SEN

FDTC 2014
Eleventh Workshop on Fault Diagnosis and Tolerance in Cryptography

September 23, 2014 @ Busan, Korea

IACR ePrint 2014/559

Pablo Rauzy (Telecom ParisTech) Countermeasures Against HO Fault Attacks FDTC 2014 1 / 36

http://pablo.rauzy.name/
http://perso.enst.fr/~guilley/
http://eprint.iacr.org/2014/559


RSA
CRT-RSA
The BellCoRe Attack
Attack Model
State of the Art
Towards a Proved High-Order Countermeasure
Countermeasures Classification
The Essence of a Countermeasure
Correcting Shamir’s Countermeasure
Simplifying Vigilant’s Countermeasure
Generating High-Order Countermeasures
Conclusions

Pablo Rauzy (Telecom ParisTech) Countermeasures Against HO Fault Attacks FDTC 2014 2 / 36



RSA

RSA (Rivest, Shamir, Adleman) Definition

RSA [RSA78] is an algorithm for public key cryptography. It can be used
as both an encryption and a signature algorithm.

I Let M be the message, (N, e) the public key, and (N, d) the private
key such that d · e ≡ 1 mod ϕ(N).

I The signature S is computed by S ≡Md mod N .

I The signature can be verified by checking that M ≡ Se mod N .

Pablo Rauzy (Telecom ParisTech) Countermeasures Against HO Fault Attacks FDTC 2014 3 / 36



CRT-RSA

CRT (Chinese Remainder Theorem) Definition

CRT-RSA [Koç94] is an optimization of the RSA computation which
allows a fourfold speedup.

I Let p and q be the primes from the key generation (N = p · q).
I These values are pre-computed (considered part of the private key):

I dp
.
= d mod (p− 1)

I dq
.
= d mod (q − 1)

I iq
.
= q−1 mod p

I S is then computed as follows:
I Sp = Mdp mod p
I Sq = Mdq mod q
I S = Sq + q · (iq · (Sp − Sq) mod p)

(recombination method of [Gar65]).

Pablo Rauzy (Telecom ParisTech) Countermeasures Against HO Fault Attacks FDTC 2014 4 / 36



The BellCoRe Attack

BellCoRe (Bell Communications Research) Definition

The BellCoRe attack [BDL97] consists in revealing the secret primes p and
q by faulting the computation. It is very powerful as it works even with
very random faulting.

I The intermediate variable Sp (resp. Sq) is faulted as Ŝp (resp. Ŝq).

I The attacker thus gets an erroneous signature Ŝ.

I The attacker can recover p (resp. q) as gcd(N,S − Ŝ).

Pablo Rauzy (Telecom ParisTech) Countermeasures Against HO Fault Attacks FDTC 2014 5 / 36



The BellCoRe Attack

Why does it Work?

I For all integer x, gcd(N, x) can only take 4 values:
I 1, if N and x are co-prime,
I p, if x is a multiple of p,
I q, if x is a multiple of q,
I N , if x is a multiple of both p and q, i.e., of N .

Pablo Rauzy (Telecom ParisTech) Countermeasures Against HO Fault Attacks FDTC 2014 6 / 36



The BellCoRe Attack

Why does it Work?

I If Sp is faulted (i.e., replaced by Ŝp 6= Sp):

I S − Ŝ = q ·
(
(iq · (Sp − Sq) mod p)− (iq · (Ŝp − Sq) mod p)

)
⇒ gcd(N,S − Ŝ) = q

Pablo Rauzy (Telecom ParisTech) Countermeasures Against HO Fault Attacks FDTC 2014 6 / 36



The BellCoRe Attack

Why does it Work?

I If Sq is faulted (i.e., replaced by Ŝq 6= Sq):

I S − Ŝ ≡ (Sq − Ŝq)− (q mod p) · iq · (Sq − Ŝq) ≡ 0 mod p
(because (q mod p) · iq ≡ 1 mod p)

⇒ gcd(N,S − Ŝ) = p

Pablo Rauzy (Telecom ParisTech) Countermeasures Against HO Fault Attacks FDTC 2014 6 / 36



Attack Model

Fault injection Definition

During the execution of an algorithm, the attacker can:

I modify any intermediate value by setting it to either a random value
(randomizing fault) or zero (zeroing fault), such a fault can be either
permanent or transient;

I skip any number of consecutive instructions (skipping fault).

At the end of the computation the attacker can read the result returned by
the algorithm.

Attack order Definition

We call order of the attack the number of fault injections in the
computation.
An attack is said to be high-order if its order is strictly more than 1.

Pablo Rauzy (Telecom ParisTech) Countermeasures Against HO Fault Attacks FDTC 2014 7 / 36



Attack Model

Data-Code Faulting Equivalence Lemma

Equivalence between faults on the code and on the data Lemma

The effect of a skipping fault (i.e., fault on the code) can be captured by
considering only randomizing and zeroing faults (i.e., fault on the data).

I If the skipped instructions are part of an arithmetic operation:
I either the computation has not been done at all: its results becomes

zero (if initialized) or random (if not),
I or the computation has partly been done: its result is thus considered

random at our modeling level.

I If the skipped instruction is a branching instruction, it is equivalent to
fault the result of the branching condition:

I at zero (i.e., false), to avoid branching,
I at random (i.e., true), to force branching.

Pablo Rauzy (Telecom ParisTech) Countermeasures Against HO Fault Attacks FDTC 2014 8 / 36



State of the Art

I High-order attacks?

I High-order countermeasures?

I Proved high-order countermeasures?

Pablo Rauzy (Telecom ParisTech) Countermeasures Against HO Fault Attacks FDTC 2014 9 / 36



State of the Art

High-Order Attacks

I High-order attacks have been studied and shown practical:
I Fault Attacks for CRT Based RSA: New Attacks, New Results, and

New Countermeasures [KQ07],
by C. H. Kim and J.-J. Quisquater at WISTP’07.

I Multi Fault Laser Attacks on Protected CRT-RSA [TK10],
by E. Trichina and R. Korkikyan at FDTC’10.

Pablo Rauzy (Telecom ParisTech) Countermeasures Against HO Fault Attacks FDTC 2014 10 / 36



State of the Art

Existing High-Order Countermeasures?

I A few countermeasures claim to be second-order:
I Practical fault countermeasures for chinese remaindering based

RSA [CJ05],
by M. Ciet and M. Joye at FDTC’05.

I On Second-Order Fault Analysis Resistance for CRT-RSA
Implementations [DGRS09],
by E. Dottax, C. Giraud, M. Rivain, and Y. Sierra at WISTP’09.

But they do not work in our more general fault model as our tool finja
shows: crt-rsa_ciet-joye.fia.zzt.html, crt-rsa_dottax-etal.fia.rzt.html.

I We found no countermeasure claiming to resist > 2 faults.

Pablo Rauzy (Telecom ParisTech) Countermeasures Against HO Fault Attacks FDTC 2014 11 / 36

crt-rsa_ciet-joye.fia.zzt.html
crt-rsa_dottax-etal.fia.rzt.html


Towards a Proved High-Order Countermeasure

I If we want a high-order countermeasure, we have to create it.

I What is a countermeasure?

I What makes a countermeasure work? What makes it fail?

I How do the existing first-order countermeasures work?

Pablo Rauzy (Telecom ParisTech) Countermeasures Against HO Fault Attacks FDTC 2014 12 / 36



Towards a Proved High-Order Countermeasure

What is a Countermeasure?

I The goal of a countermeasure against fault-injection attacks is to
avoid returning a compromised value to the attacker.

I This is done by verifying the integrity of the computation before
returning its result, and returning a random number or an error
constant rather than the actual result if appropriate.

Pablo Rauzy (Telecom ParisTech) Countermeasures Against HO Fault Attacks FDTC 2014 13 / 36



Towards a Proved High-Order Countermeasure

Computation Integrity Verification

I Obvious idea: repeat the computation and compare the results.

I But of course that costs too much.

I Existing countermeasures optimize this idea in many different ways.

Pablo Rauzy (Telecom ParisTech) Countermeasures Against HO Fault Attacks FDTC 2014 14 / 36



Countermeasures Classification

I What are the different methods used by the existing countermeasures

to verify the computation integrity faster than (Md)e
?≡M mod N?

I We used 4 main parameters to classify countermeasures.

Pablo Rauzy (Telecom ParisTech) Countermeasures Against HO Fault Attacks FDTC 2014 15 / 36



Countermeasures Classification

1. Shamir’s or Giraud’s Family of Countermeasures

I Two main families of countermeasures:
I descendants of Giraud’s countermeasure [Gir06],
I descendants of Shamir’s countermeasure [Sha99].

Pablo Rauzy (Telecom ParisTech) Countermeasures Against HO Fault Attacks FDTC 2014 16 / 36



Countermeasures Classification / 1. Shamir’s or Giraud’s Family of Countermeasures

Giraud’s Family

I Use particular exponentiation algorithms.

I Keep track of variables involved in intermediate steps.

I Consistency check of an invariant that is supposed to be spread till
the last steps.

I Examples of countermeasures in this family include:
I Boscher et al. [BNP07],
I Rivain [Riv09] (and its recently improved version [LRT14]),
I Kim et al. [KKHH11].

I The detailed study of the countermeasures in Giraud’s family is left as
future work.

Pablo Rauzy (Telecom ParisTech) Countermeasures Against HO Fault Attacks FDTC 2014 17 / 36



Countermeasures Classification / 1. Shamir’s or Giraud’s Family of Countermeasures

Shamir’s Family

I Rely on a kind of “checksum” of the computation using smaller
numbers:

I RSA computes in rings Za where a is either a large prime number (e.g.,
a = p or a = q) or the product of large prime numbers (e.g., a = pq).

I Any small number b is coprime with a.
I We have an isomorphism between the overring Zab and Za × Zb.
I The nominal computation and the checksum can be conducted in

parallel in Zab.

I Attempt to assert that some invariants on the computations and the
checksums hold.

I Many different ways to use the checksums and to verify these
invariants.

Pablo Rauzy (Telecom ParisTech) Countermeasures Against HO Fault Attacks FDTC 2014 18 / 36

Notation: Zn is a shorthand for Z/nZ.



Countermeasures Classification

2. Test-Based or Infective Countermeasures

I A first way to classify countermeasures is to separate:
I those which consist in step-wise internal checks during the CRT

computation,
I and those which use an infective computation strategy to make the

result unusable by the attacker in case of fault injection.

Pablo Rauzy (Telecom ParisTech) Countermeasures Against HO Fault Attacks FDTC 2014 19 / 36



Countermeasures Classification / 2. Test-Based or Infective Countermeasures

Test-Based Countermeasures

Test-based countermeasure Definition

A countermeasure is said to be test-based if it attempts to detect fault
injections by verifying that some arithmetic invariants are respected, and
branch to return an error instead of the numerical result of the algorithm
in case of invariant violation.

I Examples of test-based countermeasures:
I Shamir [Sha99],
I Aumüller et al. [ABF+02],
I Vigilant [Vig08],
I Joye et al. [JPY01].

Pablo Rauzy (Telecom ParisTech) Countermeasures Against HO Fault Attacks FDTC 2014 20 / 36



Countermeasures Classification / 2. Test-Based or Infective Countermeasures

Infective Countermeasures

Infective countermeasure Definition

A countermeasure is said to be infective if rather than testing arithmetic
invariants it uses them to compute a neutral element of some arithmetic
operation in a way that would not result in this neutral element if the
invariant is violated.
It then uses the results of these computations to infect the result of the
algorithm before returning it to make it unusable by the attacker (thus, it
does not need branching instructions).

I Examples of infective countermeasures:
I Blömer et al. [BOS03],
I Ciet & Joye [CJ05],
I Kim et al. [KKHH11].

Pablo Rauzy (Telecom ParisTech) Countermeasures Against HO Fault Attacks FDTC 2014 21 / 36



Countermeasures Classification / 2. Test-Based or Infective Countermeasures

Infection-Test Equivalence Property

Equivalence between test-based and infective verification Proposition

Each test-based (resp. infective) countermeasure has a direct equivalent
infective (resp. test-based) countermeasure.

I Invariants that must be verified by countermeasures are modular

equality, i.e., they are of the form a
?≡ b mod m.

I Test-based: if a != b [mod m] then return error.

I Infective: c := a - b + 1 mod m; ... return Sc.

Pablo Rauzy (Telecom ParisTech) Countermeasures Against HO Fault Attacks FDTC 2014 22 / 36



Countermeasures Classification

3. Intended Order

I In our fault model, both the countermeasures claiming to be
first-order and the ones claiming to be second-order actually offer the
same level of protection.
That is, they resist any number of randomizing faults, but can be
broken by a well targeted fault injection + a skipping (test-based) or
zeroing (infective) fault to bypass the right verification.

⇒ The concept of integrity verification does not depend on the attack
order.

Pablo Rauzy (Telecom ParisTech) Countermeasures Against HO Fault Attacks FDTC 2014 23 / 36



Countermeasures Classification

4. Usage of the Small Subrings

I In most countermeasures, the computations of Sp and Sq take place
in overrings Zpr1 and Zqr2 rather than in Zp and Zq.

I This allows the retrieval of the results modulo p and q, and verifying
the signature modulo r1 and r2 (aforementioned checksums).

I Are the smaller rings used to verify the intermediate signatures?

I Or are they used directly to compute checksums that are verified?

I Does CRT recombination takes place in an overring?

I If r1 is equal to r2, what is permitted by the resulting symmetry?

Pablo Rauzy (Telecom ParisTech) Countermeasures Against HO Fault Attacks FDTC 2014 24 / 36



Countermeasures Classification

Recap

Countermeasure Family
Verification

method/count
Intended

order Order Small subrings usage

Shamir [Sha99] Shamir test / 1 1 0 r1 = r2, consistency of intermediate
signatures

Joye et al. [JPY01] Shamir test / 2 1 0 checksums of the intermediate CRT sig-
natures

Aumüller et al. [ABF+02] Shamir test / 5 1 1 r1 = r2, consistency of the checksums
of both intermediate signatures

Blömer et al. [BOS03] Shamir infection / 2 1 1 direct verification of the intermediate
CRT signatures, CRT recombination
happens in overring

Ciet & Joye [CJ05] Shamir infection / 2 2 1 checksums of the intermediate CRT sig-
natures, CRT recombination happens in
overring

Giraud [Gir06] Giraud test / 1 1 1 NA

Boscher et al. [BNP07] Giraud test / 1 1 1 NA

Vigilant [Vig08] Shamir test / 7 1 1 r1 = r2, embedded control values,
CRT recombination happens in overring

Rivain [Riv09] Giraud test / 2 1 1 NA

Kim et al. [KKHH11] Giraud infection / 6 1 1 NA

Pablo Rauzy (Telecom ParisTech) Countermeasures Against HO Fault Attacks FDTC 2014 25 / 36



The Essence of a Countermeasure

Correctness of a countermeasure Proposition

A countermeasure is correct if it verifies the integrity of

I the intermediate computation modulo p,

I the intermediate computation modulo q, and

I the CRT recombination (which can be subject to transient fault).

Additional verifications might be necessary if the computations needed for
the countermeasure add new vulnerabilities.

I The straightforward countermeasure works at the arithmetic level.

I Any correct optimization of this algorithm is also a correct
countermeasure.

I We saw that the countermeasures we studied are optimizations of the
straightforward countermeasure.

Pablo Rauzy (Telecom ParisTech) Countermeasures Against HO Fault Attacks FDTC 2014 26 / 36



The Essence of a Countermeasure

High-Order

High-Order Countermeasures Proposition

Against randomizing faults, all correct countermeasures are high-order.

However, there are no generic high-order countermeasures if the three
types of faults in our attack model are taken into account, but it is
possible to build nth-order countermeasures for any n.

I A random fault cannot induce a verification skip, whether test-based
of infective.

I Repeating verifications n times can force the attacker to need n+ 1
faults (one actually faulting the computation and the n others for
bypassing the verifications).

Pablo Rauzy (Telecom ParisTech) Countermeasures Against HO Fault Attacks FDTC 2014 27 / 36



Correcting Shamir’s Countermeasure

Algorithm: CRT-RSA with Shamir’s countermeasure

Input: Message M , key (p, q, d, iq) Output: Signature Md mod N , or error

1 Choose a small random integer r.

2 p′ = p · r
3 q′ = q · r

4 if p′ 6≡ 0 mod p or q′ 6≡ 0 mod q then return error

5 S′p = Md mod ϕ(p′) mod p′ // Intermediate signature in Zpr

6 S′q = Md mod ϕ(q′) mod q′ // Intermediate signature in Zqr

7 if S′p 6≡ S′q mod r then return error

8 Sp = S′p mod p // Retrieve intermediate signature in Zp

9 Sq = S′q mod q // Retrieve intermediate signature in Zq

10 S = Sq + q · (iq · (Sp − Sq) mod p) // Recombination in ZN

11 if S 6≡ S′p mod p or S 6≡ S′q mod q then return error

12 return S

Pablo Rauzy (Telecom ParisTech) Countermeasures Against HO Fault Attacks FDTC 2014 28 / 36



Correcting Shamir’s Countermeasure

Algorithm: CRT-RSA with Shamir’s countermeasure

Input: Message M , key (p, q, d, iq) Output: Signature Md mod N , or error

1 Choose a small random integer r.

2 p′ = p · r
3 q′ = q · r
4 if p′ 6≡ 0 mod p or q′ 6≡ 0 mod q then return error

5 S′p = Md mod ϕ(p′) mod p′ // Intermediate signature in Zpr

6 S′q = Md mod ϕ(q′) mod q′ // Intermediate signature in Zqr

7 if S′p 6≡ S′q mod r then return error

8 Sp = S′p mod p // Retrieve intermediate signature in Zp

9 Sq = S′q mod q // Retrieve intermediate signature in Zq

10 S = Sq + q · (iq · (Sp − Sq) mod p) // Recombination in ZN

11 if S 6≡ S′p mod p or S 6≡ S′q mod q then return error

12 return S

Pablo Rauzy (Telecom ParisTech) Countermeasures Against HO Fault Attacks FDTC 2014 28 / 36



Simplifying Vigilant’s Countermeasure

I We simplified Vigilant’s countermeasure in 4 steps:
I simplification of Coron et al.’s corrections [CGM+10]

+ our simplifications from our PPREW’14 paper [RG14];
I remove additional computation with random numbers;
I taking advantage of Vigilant’s clever sub-CRT embedding technique to

verify the 3 necessary invariants in one single step in the small subring;
I Bonus: transform the countermeasure to it’s infective variant.

Pablo Rauzy (Telecom ParisTech) Countermeasures Against HO Fault Attacks FDTC 2014 29 / 36



Algorithm: CRT-RSA with Vigilant’s countermeasure

Input: Message M , key (p, q, dp, dq, iq) Output: Signature Md mod N , or error
1 Choose a small random integer r, R1, R2, R3, R4. N = p · q
2 p′ = p · r2

3 ipr = p−1 mod r2

4 Mp = M mod p′

5 Bp = p · ipr ; Ap = 1− Bp mod p′

6 M′p = Ap ·Mp + Bp · (1 + r) mod p′ // CRT insertion of verification value in M′p
7 d′p = dp + R3 · (p− 1)

8 S′p = M′p
d′p mod ϕ(p′)

mod p′ // Intermediate signature in Z
pr2

9 if M′p 6≡ M mod p or d′p 6≡ dp mod p− 1 or Bp · S′p 6≡ Bp · (1 + d′p · r) mod p′ then return error

10 Spr = S′p − Bp · (1 + d′p · r − R1) // Verification value of S′p swapped with R1

11 q′ = q · r2

12 iqr = q−1 mod r2

13 Mq = M mod q′

14 Bq = q · iqr ; Aq = 1− Bq mod q′

15 M′q = Aq ·Mq + Bq · (1 + r) mod q′ // CRT insertion of verification value in M′q
16 d′q = dq + R4 · (q − 1)

17 S′q = M′q
d′q mod ϕ(q′)

mod q′ // Intermediate signature in Z
qr2

18 if M′q 6≡ M mod q or d′q 6≡ dq mod q − 1 or Bq · S′q 6≡ Bq · (1 + d′q · r) mod q′ then return error

19 Sqr = S′q − Bq · (1 + d′q · r − R2) // Verification value of S′q swapped with R2

20 if Mp 6≡ Mq mod r2 then return error

21 Sr = Sqr + q · (iq · (Spr − Sqr) mod p′) // Recombination checksum in Z
Nr2

22 S′ = S′q + q · (iq · (S′p − S′q) mod p′) // Recombination in Z
Nr2

23 if N·(Sr − R2 − q · iq · (R1 − R2)) 6≡ 0 mod Nr2 then return error
24 if q · iq 6≡ 1 mod p then return error
25 return S = Sr mod N // Retrieve result in ZN

Pablo Rauzy (Telecom ParisTech) Countermeasures Against HO Fault Attacks FDTC 2014 30 / 36



Algorithm: CRT-RSA with Vigilant’s countermeasure

Input: Message M , key (p, q, dp, dq, iq) Output: Signature Md mod N , or error
1 Choose a small random integer r, R1, R2, R3, R4. N = p · q
2 p′ = p · r2

3 ipr = p−1 mod r2

4 Mp = M mod p′

5 Bp = p · ipr ; Ap = 1− Bp mod p′

6 M′p = Ap ·Mp + Bp · (1 + r) mod p′ // CRT insertion of verification value in M′p
7 d′p = dp + R3 · (p− 1)

8 S′p = M′p
d′p mod ϕ(p′)

mod p′ // Intermediate signature in Z
pr2

9 if M′p 6≡ M mod p or d′p 6≡ dp mod p− 1 or Bp · S′p 6≡ Bp · (1 + d′p · r) mod p′ then return error

10 Spr = S′p − Bp · (1 + d′p · r − R1) // Verification value of S′p swapped with R1

11 q′ = q · r2

12 iqr = q−1 mod r2

13 Mq = M mod q′

14 Bq = q · iqr ; Aq = 1− Bq mod q′

15 M′q = Aq ·Mq + Bq · (1 + r) mod q′ // CRT insertion of verification value in M′q
16 d′q = dq + R4 · (q − 1)

17 S′q = M′q
d′q mod ϕ(q′)

mod q′ // Intermediate signature in Z
qr2

18 if M′q 6≡ M mod q or d′q 6≡ dq mod q − 1 or Bq · S′q 6≡ Bq · (1 + d′q · r) mod q′ then return error

19 Sqr = S′q − Bq · (1 + d′q · r − R2) // Verification value of S′q swapped with R2

20 if Mp 6≡ Mq mod r2 then return error

21 Sr = Sqr + q · (iq · (Spr − Sqr) mod p′) // Recombination checksum in Z
Nr2

22 S′ = S′q + q · (iq · (S′p − S′q) mod p′) // Recombination in Z
Nr2

23 if pq·(Sr − R2 − q · iq · (R1 − R2)) 6≡ 0 mod Nr2 then return error

24 if q · iq 6≡ 1 mod p then return error

25 return S = Sr mod N // Retrieve result in ZN

Pablo Rauzy (Telecom ParisTech) Countermeasures Against HO Fault Attacks FDTC 2014 30 / 36



Algorithm: CRT-RSA with Vigilant’s countermeasure

Input: Message M , key (p, q, dp, dq, iq) Output: Signature Md mod N , or error
1 Choose a small random integer r, R1, R2. N = p · q
2 p′ = p · r2

3 ipr = p−1 mod r2

4 Mp = M mod p′

5 Bp = p · ipr ; Ap = 1− Bp mod p′

6 M′p = Ap ·Mp + Bp · (1 + r) mod p′ // CRT insertion of verification value in M′p

7 d′p = dp + R3 · (p− 1)

8 S′p = M′p
dp mod ϕ(p′) mod p′ // Intermediate signature in Z

pr2

9 if M′p 6≡ M mod p or Bp · S′p 6≡ Bp · (1 + dp · r) mod p′ then return error

10 Spr = S′p − Bp · (1 + dp · r − R1) // Verification value of S′p swapped with R1

11 q′ = q · r2

12 iqr = q−1 mod r2

13 Mq = M mod q′

14 Bq = q · iqr ; Aq = 1− Bq mod q′

15 M′q = Aq ·Mq + Bq · (1 + r) mod q′ // CRT insertion of verification value in M′q

16 d′q = dq + R4 · (q − 1)

17 S′q = M′q
dq mod ϕ(q′) mod q′ // Intermediate signature in Z

qr2

18 if M′q 6≡ M mod q or Bq · S′q 6≡ Bq · (1 + dq · r) mod q′ then return error

19 Sqr = S′q − Bq · (1 + dq · r − R2) // Verification value of S′q swapped with R2

20 if Mp 6≡ Mq mod r2 then return error

21 Sr = Sqr + q · (iq · (Spr − Sqr) mod p′) // Recombination checksum in Z
Nr2

22 S′ = S′q + q · (iq · (S′p − S′q) mod p′) // Recombination in Z
Nr2

23 if pq·(Sr − R2 − q · iq · (R1 − R2)) 6≡ 0 mod Nr2 then return error

24 if q · iq 6≡ 1 mod p then return error

25 return S = Sr mod N // Retrieve result in ZN

Pablo Rauzy (Telecom ParisTech) Countermeasures Against HO Fault Attacks FDTC 2014 30 / 36



Algorithm: CRT-RSA with Vigilant’s countermeasure

Input: Message M , key (p, q, dp, dq, iq) Output: Signature Md mod N , or
1 Choose a small random integer r. N = p · q
2 p′ = p · r2

3 ipr = p−1 mod r2

4 Mp = M mod p′

5 Bp = p · ipr ; Ap = 1− Bp mod p′

6 M′p = Ap ·Mp + Bp · (1 + r) mod p′ // CRT insertion of verification value in M′p

7 d′p = dp + R3 · (p− 1)

8 S′p = M′p
dp mod ϕ(p′) mod p′ // Intermediate signature in Z

pr2

9 if M′p + N 6≡ M mod p then return error

10 Spr = 1 + dp · r // Checksum in Z
r2

for S′p
11 q′ = q · r2

12 iqr = q−1 mod r2

13 Mq = M mod q′

14 Bq = q · iqr ; Aq = 1− Bq mod q′

15 M′q = Aq ·Mq + Bq · (1 + r) mod q′ // CRT insertion of verification value in M′q

16 d′q = dq + R4 · (q − 1)

17 S′q = M′q
dq mod ϕ(q′) mod q′ // Intermediate signature in Z

qr2

18 if M′q + N 6≡ M mod q then return error

19 Sqr = 1 + dq · r // Checksum in Z
r2

for S′q

20 if Mp 6≡ Mq mod r2 then return error

21 Sr = Sqr + q · (iq · (Spr − Sqr) mod p′) // Recombination checksum in Z
r2

22 S′ = S′q + q · (iq · (S′p − S′q) mod p′) // Recombination in Z
Nr2

23 if S′ 6≡ Sr mod r2 then return error

24 if q · iq 6≡ 1 mod p then return error

25 return S = S′ mod N // Retrieve result in ZN

Pablo Rauzy (Telecom ParisTech) Countermeasures Against HO Fault Attacks FDTC 2014 30 / 36



Algorithm: CRT-RSA with Vigilant’s countermeasure

Input: Message M , key (p, q, dp, dq, iq) Output: Signature Md mod N , or a random value in ZN
1 Choose a small random integer r. N = p · q
2 p′ = p · r2

3 ipr = p−1 mod r2

4 Mp = M mod p′

5 Bp = p · ipr ; Ap = 1− Bp mod p′

6 M′p = Ap ·Mp + Bp · (1 + r) mod p′ // CRT insertion of verification value in M′p

7 d′p = dp + R3 · (p− 1)

8 S′p = M′p
dp mod ϕ(p′) mod p′ // Intermediate signature in Z

pr2

9 cp = M′p + N −M + 1 mod p

10 Spr = 1 + dp · r // Checksum in Z
r2

for S′p
11 q′ = q · r2

12 iqr = q−1 mod r2

13 Mq = M mod q′

14 Bq = q · iqr ; Aq = 1− Bq mod q′

15 M′q = Aq ·Mq + Bq · (1 + r) mod q′ // CRT insertion of verification value in M′q

16 d′q = dq + R4 · (q − 1)

17 S′q = M′q
dq mod ϕ(q′) mod q′ // Intermediate signature in Z

qr2

18 cq = M′q + N −M + 1 mod q

19 Sqr = 1 + dq · r // Checksum in Z
r2

for S′q

20 if Mp 6≡ Mq mod r2 then return error

21 Sr = Sqr + q · (iq · (Spr − Sqr) mod p′) // Recombination checksum in Z
r2

22 S′ = S′q + q · (iq · (S′p − S′q) mod p′) // Recombination in Z
Nr2

23 cS = S′ − Sr + 1 mod r2

24 if q · iq 6≡ 1 mod p then return error

25 return S = S′cpcqcS mod N // Retrieve result in ZN

Pablo Rauzy (Telecom ParisTech) Countermeasures Against HO Fault Attacks FDTC 2014 30 / 36



Generating High-Order Countermeasures

Algorithm: Generation of CRT-RSA with Vigilant’s countermeasure at order D

Input: order D Output: CRT-RSA algorithm protected against fault injection attack of order D
1 print Choose a small random integer r.
2 print N = p · q
3 print p′ = p · r2 ; ipr = p−1 mod r2 ; Mp = M mod p′ ; Bp = p · ipr ; Ap = 1− Bp mod p′

4 print M′p = Ap ·Mp + Bp · (1 + r) mod p′

5 print q′ = q · r2 ; iqr = q−1 mod r2 ; Mq = M mod q′ ; Bq = q · iqr ; Aq = 1− Bq mod q′

6 print M′q = Aq ·Mq + Bq · (1 + r) mod q′

7 print S′p = M′p
dp mod ϕ(p′) mod p′

8 print S′q = M′q
dq mod ϕ(q′) mod q′

9 print Spr = 1 + dp · r
10 print Sqr = 1 + dq · r
11 print Sr = Sqr + q · (iq · (Spr − Sqr) mod p′)
12 print S′ = S′q + q · (iq · (S′p − S′q) mod p′)

13 for i← 1 to D do
14 print cp; print i; print = M′p + N −M + 1 mod p

15 print cq ; print i; print = M′q + N −M + 1 mod q

16 print cS ; print i; print = S′ − Sr + 1 mod r2

17 end
18 print c∗ =
19 for i← 1 to D do
20 print cp; print i; print ×
21 print cq ; print i; print ×
22 print cS ; print i; print ×
23 end
24 print 1

25 print return S = Sc∗ mod N

Pablo Rauzy (Telecom ParisTech) Countermeasures Against HO Fault Attacks FDTC 2014 31 / 36



Conclusions

I Better understanding of existing countermeasures.

I Unified algorithm representations with consistent naming of variables.

I Way to create high-order countermeasures.

I These countermeasures are not specific to CRT-RSA.

I Instead, they are generic ways to verify the integrity of any modular
computations.

I Thus, their ideas can be reused. . .

Pablo Rauzy (Telecom ParisTech) Countermeasures Against HO Fault Attacks FDTC 2014 32 / 36



References (1)

[ABF+02] Christian Aumüller, Peter Bier, Wieland Fischer, Peter Hofreiter, and Jean-Pierre Seifert.
Fault Attacks on RSA with CRT: Concrete Results and Practical Countermeasures.
In Burton S. Kaliski, Jr., Çetin Kaya Koç, and Christof Paar, editors, CHES, volume 2523 of Lecture Notes in
Computer Science, pages 260–275. Springer, 2002.

[BDL97] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton.
On the Importance of Checking Cryptographic Protocols for Faults.
In Proceedings of Eurocrypt’97, volume 1233 of LNCS, pages 37–51. Springer, May 11-15 1997.
Konstanz, Germany. DOI: 10.1007/3-540-69053-0 4.

[BNP07] Arnaud Boscher, Robert Naciri, and Emmanuel Prouff.
CRT RSA Algorithm Protected Against Fault Attacks.
In Damien Sauveron, Constantinos Markantonakis, Angelos Bilas, and Jean-Jacques Quisquater, editors, WISTP,
volume 4462 of Lecture Notes in Computer Science, pages 229–243. Springer, 2007.

[BOS03] Johannes Blömer, Martin Otto, and Jean-Pierre Seifert.
A new CRT-RSA algorithm secure against bellcore attacks.
In Sushil Jajodia, Vijayalakshmi Atluri, and Trent Jaeger, editors, ACM Conference on Computer and
Communications Security, pages 311–320. ACM, 2003.

[CGM+10] Jean-Sébastien Coron, Christophe Giraud, Nicolas Morin, Gilles Piret, and David Vigilant.
Fault Attacks and Countermeasures on Vigilant’s RSA-CRT Algorithm.
In Luca Breveglieri, Marc Joye, Israel Koren, David Naccache, and Ingrid Verbauwhede, editors, FDTC, pages
89–96. IEEE Computer Society, 2010.

[CJ05] Mathieu Ciet and Marc Joye.
Practical fault countermeasures for chinese remaindering based RSA.
In Fault Diagnosis and Tolerance in Cryptography, 2005.

[DGRS09] Emmanuelle Dottax, Christophe Giraud, Matthieu Rivain, and Yannick Sierra.
On Second-Order Fault Analysis Resistance for CRT-RSA Implementations.
In Olivier Markowitch, Angelos Bilas, Jaap-Henk Hoepman, Chris J. Mitchell, and Jean-Jacques Quisquater,
editors, WISTP, volume 5746 of Lecture Notes in Computer Science, pages 68–83. Springer, 2009.

Pablo Rauzy (Telecom ParisTech) Countermeasures Against HO Fault Attacks FDTC 2014 33 / 36



References (2)

[Gar65] Harvey L. Garner.
Number Systems and Arithmetic.
Advances in Computers, 6:131–194, 1965.

[Gir06] Christophe Giraud.
An RSA Implementation Resistant to Fault Attacks and to Simple Power Analysis.
IEEE Trans. Computers, 55(9):1116–1120, 2006.

[JPY01] Marc Joye, Pascal Paillier, and Sung-Ming Yen.
Secure evaluation of modular functions, 2001.

[KKHH11] Sung-Kyoung Kim, Tae Hyun Kim, Dong-Guk Han, and Seokhie Hong.
An efficient CRT-RSA algorithm secure against power and fault attacks.
J. Syst. Softw., 84:1660–1669, October 2011.

[Koç94] Çetin Kaya Koç.
High-Speed RSA Implementation, November 1994.
Version 2, ftp://ftp.rsasecurity.com/pub/pdfs/tr201.pdf.

[KQ07] ChongHee Kim and Jean-Jacques Quisquater.
Fault attacks for crt based rsa: New attacks, new results, and new countermeasures.
In Damien Sauveron, Konstantinos Markantonakis, Angelos Bilas, and Jean-Jacques Quisquater, editors,
Information Security Theory and Practices. Smart Cards, Mobile and Ubiquitous Computing Systems, volume 4462
of Lecture Notes in Computer Science, pages 215–228. Springer Berlin Heidelberg, 2007.

[LRT14] Duc-Phong Le, Matthieu Rivain, and Chik How Tan.
On double exponentiation for securing RSA against fault analysis.
In Josh Benaloh, editor, CT-RSA, volume 8366 of Lecture Notes in Computer Science, pages 152–168. Springer,
2014.

[RG14] Pablo Rauzy and Sylvain Guilley.
Formal Analysis of CRT-RSA Vigilant’s Countermeasure Against the BellCoRe Attack.
In 3rd ACM SIGPLAN Program Protection and Reverse Engineering Workshop (PPREW 2014), January 25 2014.
San Diego, CA, USA. ISBN: 978-1-4503-2649-0.

Pablo Rauzy (Telecom ParisTech) Countermeasures Against HO Fault Attacks FDTC 2014 34 / 36

ftp://ftp.rsasecurity.com/pub/pdfs/tr201.pdf


References (3)

[Riv09] Matthieu Rivain.
Securing RSA against Fault Analysis by Double Addition Chain Exponentiation.
Cryptology ePrint Archive, Report 2009/165, 2009.
http://eprint.iacr.org/2009/165/.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman.
A Method for Obtaining Digital Signatures and Public-Key Cryptosystems.
Communications of the ACM, 21(2):120–126, 1978.

[Sha99] Adi Shamir.
Method and apparatus for protecting public key schemes from timing and fault attacks, November 1999.
Patent Number 5,991,415; also presented at the rump session of EUROCRYPT ’97.

[TK10] Elena Trichina and Roman Korkikyan.
Multi fault laser attacks on protected CRT-RSA.
In 2010 Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC 2010, Santa Barbara, California, USA,
21 August 2010, pages 75–86, 2010.

[Vig08] David Vigilant.
RSA with CRT: A New Cost-Effective Solution to Thwart Fault Attacks.
In Elisabeth Oswald and Pankaj Rohatgi, editors, CHES, volume 5154 of Lecture Notes in Computer Science, pages
130–145. Springer, 2008.

Pablo Rauzy (Telecom ParisTech) Countermeasures Against HO Fault Attacks FDTC 2014 35 / 36

http://eprint.iacr.org/2009/165/


That was it. Questions?

RSA
CRT-RSA
The BellCoRe Attack

Why does it Work?
Attack Model

Data-Code Faulting Equivalence Lemma
State of the Art

High-Order Attacks
Existing High-Order Countermeasures?

Towards a Proved High-Order Countermeasure
What is a Countermeasure?
Computation Integrity Verification

Countermeasures Classification
1. Shamir’s or Giraud’s Family of Countermeasures
2. Test-Based or Infective Countermeasures
3. Intended Order
4. Usage of the Small Subrings
Recap

The Essence of a Countermeasure
High-Order

Correcting Shamir’s Countermeasure
Simplifying Vigilant’s Countermeasure
Generating High-Order Countermeasures
Conclusions

rauzy@enst.fr

IACR ePrint 2014/559

Pablo Rauzy (Telecom ParisTech) Countermeasures Against HO Fault Attacks FDTC 2014 36 / 36

http://eprint.iacr.org/2014/559

