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RSA

RSA (Rivest, Shamir, Adleman) Definition

RSA [RSA78] is an algorithm for public key cryptography. It can be used
as both an encryption and a signature algorithm.

I Let M be the message, (N, e) the public key, and (N, d) the private
key such that d · e ≡ 1 mod ϕ(N).

I The signature S is computed by S ≡Md mod N .

I The signature can be verified by checking that M ≡ Se mod N .
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CRT-RSA

CRT (Chinese Remainder Theorem) Definition

CRT-RSA [Koç94] is an optimization of the RSA computation which
allows a fourfold speedup.

I Let p and q be the primes from the key generation (N = p · q).
I These values are pre-computed (considered part of the private key):

I dp
.
= d mod (p− 1)

I dq
.
= d mod (q − 1)

I iq
.
= q−1 mod p

I S is then computed as follows:
I Sp = Mdp mod p
I Sq = Mdq mod q
I S = Sq + q · (iq · (Sp − Sq) mod p)

(recombination method of [Gar65]).
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The BellCoRe Attack

BellCoRe (Bell Communications Research) Definition

The BellCoRe attack [BDL97] consists in revealing the secret primes p and
q by faulting the computation. It is very powerful as it works even with
very random faulting.

I The intermediate variable Sp (resp. Sq) is faulted as Ŝp (resp. Ŝq).

I The attacker thus gets an erroneous signature Ŝ.

I The attacker can recover p (resp. q) as gcd(N,S − Ŝ).
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The BellCoRe Attack

Why does it Work?

I For all integer x, gcd(N, x) can only take 4 values:
I 1, if N and x are co-prime,
I p, if x is a multiple of p,
I q, if x is a multiple of q,
I N , if x is a multiple of both p and q, i.e., of N .
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The BellCoRe Attack

Why does it Work?

I If Sp is faulted (i.e., replaced by Ŝp 6= Sp):

I S − Ŝ = q ·
(
(iq · (Sp − Sq) mod p)− (iq · (Ŝp − Sq) mod p)

)
⇒ gcd(N,S − Ŝ) = q
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The BellCoRe Attack

Why does it Work?

I If Sq is faulted (i.e., replaced by Ŝq 6= Sq):

I S − Ŝ ≡ (Sq − Ŝq)− (q mod p) · iq · (Sq − Ŝq) ≡ 0 mod p
(because (q mod p) · iq ≡ 1 mod p)

⇒ gcd(N,S − Ŝ) = p
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Countermeasures

Several protections against the BellCoRe attacks have been proposed.

Some of them are given below:

I Obvious countermeasures: no CRT, or with signature verification;

I Shamir [Sha99];

I Aumüller et al. [ABF+02];

I Vigilant, original [Vig08] and with some corrections by Coron et
al. [CGM+10];

I Rivain [Riv09];

I Blömer et al. [BOS03];

I Kim et al. [KKHH11].

I . . .
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Formal Analysis

I The goal is making sure countermeasures are trustworthy.

I We want to cover a very general attacker model.

I We want our proof to apply to any implementation that is a
refinement of the abstract algorithm.

⇒ We want our tool to offer a full fault coverage of CRT-RSA
algorithm, thereby keeping the proof valid even if the code is
transformed (e.g., optimized, compiled, partitioned in
software/hardware, or equipped with dedicated countermeasures).
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Formal Analysis

Attacker Model

I An attacker can request a CRT-RSA computation.

I During the computation, the attacker can fault any intermediate
value.

I A faulted value can be zero or random.

I The attacker can read the final result of the computation.
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Formal Analysis

Fault Model

Fault injection Definition

During the execution of an algorithm, the attacker can:

I modify any intermediate value by setting it to either a random value
(randomizing fault) or zero (zeroing fault), such a fault can be either
permanent or transient;

I skip any number of consecutive instructions (skipping fault).

At the end of the computation the attacker can read the result returned by
the algorithm.

Attack order Definition

We call order of the attack the number of fault injections in the
computation.
An attack is said to be high-order if its order is strictly more than 1.
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Formal Analysis / Fault Model

Data-Code Faulting Equivalence Lemma

Equivalence between faults on the code and on the data Lemma

The effect of a skipping fault (i.e., fault on the code) can be captured by
considering only randomizing and zeroing faults (i.e., fault on the data).

I If the skipped instructions are part of an arithmetic operation:
I either the computation has not been done at all: its results becomes

zero (if initialized) or random (if not),
I or the computation has partly been done: its result is thus considered

random at our modeling level.

I If the skipped instruction is a branching instruction, it is equivalent to
fault the result of the branching condition:

I at zero (i.e., false), to avoid branching,
I at random (i.e., true), to force branching.

Pablo Rauzy (Telecom ParisTech) DFA Countermeasures 2015-03-19 12 / 51



Formal Analysis

Algorithm Description

I Low level enough for the attack to work if protections are not
implemented.

I Intermediate variable that would appear during refinement could be
the target of an attack, but such a fault would propagate to an
intermediate variable of the high level description.
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finja

I Input:
I A high level description of the computation, and
I an attack success condition.

I Output:
I Either the list of possible attacks, or
I a proof that the computation is resistant to fault injections.

⇒ http://pablo.rauzy.name/sensi/finja.html
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finja

How does it Works?

I The description of the computation is transformed into a term.
I The term is a tree which encodes:

I dependencies between the intermediate values, and
I properties of the intermediate values (such as being null, being null modulo

another term, or being a multiple of another term).

I Each intermediate value (subterms of the tree) can be faulted, in such
case its properties become:

I nothing, in the case of a randomizing fault, or
I being null, in the case of a zeroing fault.

I Symbolic computation by term rewriting is used to simplify the term
and the attack success condition.
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finja

Rewriting System

I Most of the Z ring axioms,

I ZN subrings,

I And a few theorems.
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finja

Rewriting System

I Most of the Z ring axioms:
I neutral elements (0 for sums, 1 for products);
I absorbing element (0, for products);
I inverses and opposites;
I associativity and commutativity;
I but no distributivity (not confluent).

I ZN subrings,

I And a few theorems.
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finja

Rewriting System

I Most of the Z ring axioms,
I ZN subrings:

I identity:
I (a mod N) mod N = a mod N ,
I Nk mod N = 0;

I inverse:
I (a mod N)× (a−1 mod N) mod N = 1,
I (a mod N) + (−a mod N) mod N = 0;

I associativity and commutativity:
I (b mod N) + (a mod N) mod N = a+ b mod N ,
I (a mod N)× (b mod N) mod N = a× b mod N ;

I subrings: (a mod N ×m) mod N = a mod N .

I And a few theorems.
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finja

Rewriting System

I Most of the Z ring axioms,

I ZN subrings,
I And a few theorems:

I Fermat’s little theorem;
I its generalization, Euler’s theorem;
I Chinese remainder theorem;
I Binomial theorem in Zr2 rings

(1 + r)d ≡ 1 + dr mod r2.
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finja

Testing Attacks

For each possible fault attack:

I the faulted term is simplified to propagate to modified properties;

I simplified terms (faulted and original) are then fed into the attack
success condition;

I the attack success condition itself is then simplified to either true (the
attack works) or false (it doesn’t).
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finja

Minimal Example of Usage

I Computation: t = a+ b× c.

I Let’s say the “attack” works if t 6≡ a
mod b.

minimal-example.fia
noprop a, b, c ;

t := a + b * c ;

return t ;

%%

@ !=[b] a

I finja minimal-example.fia -r

I finja minimal-example.fia -z
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Firsts Results

I First formally proved fault injection attack countermeasures:
I Aumüller et al., in [RG14a],
I Vigilant, in [RG14b].

I Both countermeasures simplified.

I But both countermeasures are first-order.
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High-Order Countermeasures

I High-order attacks?

I High-order countermeasures?

I Proved high-order countermeasures?
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High-Order Countermeasures

High-Order Attacks

I High-order attacks have been studied and shown practical:
I Fault Attacks for CRT Based RSA: New Attacks, New Results, and

New Countermeasures [KQ07],
by C. H. Kim and J.-J. Quisquater at WISTP’07.

I Multi Fault Laser Attacks on Protected CRT-RSA [TK10],
by E. Trichina and R. Korkikyan at FDTC’10.
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High-Order Countermeasures

Existing High-Order Countermeasures?

I A few countermeasures claim to be second-order:
I Practical fault countermeasures for chinese remaindering based

RSA [CJ05],
by M. Ciet and M. Joye at FDTC’05.

I On Second-Order Fault Analysis Resistance for CRT-RSA
Implementations [DGRS09],
by E. Dottax, C. Giraud, M. Rivain, and Y. Sierra at WISTP’09.

But they do not work in our more general fault model as our tool
finja shows: crt-rsa_ciet-joye.fia.zzt.html,

crt-rsa_dottax-etal.fia.rzt.html.

I We found no countermeasure claiming to resist > 2 faults.
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Towards a Proved High-Order Countermeasure

I If we want a high-order countermeasure, we have to create it.

I What is a countermeasure?

I What makes a countermeasure work? What makes it fail?

I How do the existing first-order countermeasures work?
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Towards a Proved High-Order Countermeasure

What is a Countermeasure?

I The goal of a countermeasure against fault-injection attacks is to
avoid returning a compromised value to the attacker.

I This is done by verifying the integrity of the computation before
returning its result, and returning a random number or an error
constant rather than the actual result if appropriate.
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Towards a Proved High-Order Countermeasure

Computation Integrity Verification

I Obvious idea: repeat the computation and compare the results.

I But of course that costs too much.

I Existing countermeasures optimize this idea in many different ways.
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Countermeasures Classification

I What are the different methods used by the existing countermeasures

to verify the computation integrity faster than (Md)e
?≡M mod N?

I We used 4 main parameters to classify countermeasures.
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Countermeasures Classification

1. Shamir’s or Giraud’s Family of Countermeasures

I Two main families of countermeasures:
I descendants of Giraud’s countermeasure [Gir06],
I descendants of Shamir’s countermeasure [Sha99].
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Countermeasures Classification / 1. Shamir’s or Giraud’s Family of Countermeasures

Giraud’s Family

I Use particular exponentiation algorithms.

I Keep track of variables involved in intermediate steps.

I Consistency check of an invariant that is supposed to be spread till
the last steps.

I Examples of countermeasures in this family include:
I Boscher et al. [BNP07],
I Rivain [Riv09] (and its recently improved version [LRT14]),
I Kim et al. [KKHH11].

I The detailed study of the countermeasures in Giraud’s family is left as
future work.
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Countermeasures Classification / 1. Shamir’s or Giraud’s Family of Countermeasures

Shamir’s Family

I Rely on a kind of “checksum” of the computation using smaller
numbers:

I RSA computes in rings Za where a is either a large prime number (e.g.,
a = p or a = q) or the product of large prime numbers (e.g., a = pq).

I Any small number b is coprime with a.
I We have an isomorphism between the overring Zab and Za × Zb.
I The nominal computation and the checksum can be conducted in

parallel in Zab.

I Attempt to assert that some invariants on the computations and the
checksums hold.

I Many different ways to use the checksums and to verify these
invariants.
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Countermeasures Classification

2. Test-Based or Infective Countermeasures

I A first way to classify countermeasures is to separate:
I those which consist in step-wise internal checks during the CRT

computation,
I and those which use an infective computation strategy to make the

result unusable by the attacker in case of fault injection.
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Countermeasures Classification / 2. Test-Based or Infective Countermeasures

Test-Based Countermeasures

Test-based countermeasure Definition

A countermeasure is said to be test-based if it attempts to detect fault
injections by verifying that some arithmetic invariants are respected, and
branch to return an error instead of the numerical result of the algorithm
in case of invariant violation.

I Examples of test-based countermeasures:
I Shamir [Sha99],
I Aumüller et al. [ABF+02],
I Vigilant [Vig08],
I Joye et al. [JPY01].

Pablo Rauzy (Telecom ParisTech) DFA Countermeasures 2015-03-19 31 / 51



Countermeasures Classification / 2. Test-Based or Infective Countermeasures

Infective Countermeasures

Infective countermeasure Definition

A countermeasure is said to be infective if rather than testing arithmetic
invariants it uses them to compute a neutral element of some arithmetic
operation in a way that would not result in this neutral element if the
invariant is violated.
It then uses the results of these computations to infect the result of the
algorithm before returning it to make it unusable by the attacker (thus, it
does not need branching instructions).

I Examples of infective countermeasures:
I Blömer et al. [BOS03],
I Ciet & Joye [CJ05],
I Kim et al. [KKHH11].
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Countermeasures Classification / 2. Test-Based or Infective Countermeasures

Infection-Test Equivalence Property

Equivalence between test-based and infective verification Proposition

Each test-based (resp. infective) countermeasure has a direct equivalent
infective (resp. test-based) countermeasure.

I Invariants that must be verified by countermeasures are modular

equality, i.e., they are of the form a
?≡ b mod m.

I Test-based: if a != b [mod m] then return error.

I Infective: c := a - b + 1 mod m; ... return Sc.
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Countermeasures Classification

3. Intended Order

I In our fault model, both the countermeasures claiming to be
first-order and the ones claiming to be second-order actually offer the
same level of protection.
That is, they resist any number of randomizing faults, but can be
broken by a well targeted fault injection + a skipping (test-based) or
zeroing (infective) fault to bypass the right verification.

⇒ The concept of integrity verification does not depend on the attack
order.
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Countermeasures Classification

4. Usage of the Small Subrings

I In most countermeasures, the computations of Sp and Sq take place
in overrings Zpr1 and Zqr2 rather than in Zp and Zq.

I This allows the retrieval of the results modulo p and q, and verifying
the signature modulo r1 and r2 (aforementioned checksums).

I Are the smaller rings used to verify the intermediate signatures?

I Or are they used directly to compute checksums that are verified?

I Does CRT recombination takes place in an overring?

I If r1 is equal to r2, what is permitted by the resulting symmetry?
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Countermeasures Classification

Recap

Countermeasure Family
Verification

method/count
Intended

order Order Small subrings usage

Shamir [Sha99] Shamir test / 1 1 0 r1 = r2, consistency of intermediate
signatures

Joye et al. [JPY01] Shamir test / 2 1 0 checksums of the intermediate CRT sig-
natures

Aumüller et al. [ABF+02] Shamir test / 5 1 1 r1 = r2, consistency of the checksums
of both intermediate signatures

Blömer et al. [BOS03] Shamir infection / 2 1 1 direct verification of the intermediate
CRT signatures, CRT recombination
happens in overring

Ciet & Joye [CJ05] Shamir infection / 2 2 1 checksums of the intermediate CRT sig-
natures, CRT recombination happens in
overring

Giraud [Gir06] Giraud test / 1 1 1 NA

Boscher et al. [BNP07] Giraud test / 1 1 1 NA

Vigilant [Vig08] Shamir test / 7 1 1 r1 = r2, embedded control values,
CRT recombination happens in overring

Rivain [Riv09] Giraud test / 2 1 1 NA

Kim et al. [KKHH11] Giraud infection / 6 1 1 NA
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The Essence of a Countermeasure

Correctness of a countermeasure Proposition

A countermeasure is correct if it verifies the integrity of

I the intermediate computation modulo p,

I the intermediate computation modulo q, and

I the CRT recombination (which can be subject to transient fault).

Additional verifications might be necessary if the computations needed for
the countermeasure add new vulnerabilities.

I The straightforward countermeasure works at the arithmetic level.

I Any correct optimization of this algorithm is also a correct
countermeasure.

I We saw that the countermeasures we studied are optimizations of the
straightforward countermeasure.
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The Essence of a Countermeasure

High-Order

High-Order Countermeasures Proposition

Against randomizing faults, all correct countermeasures are high-order.

However, there are no generic high-order countermeasures if the three
types of faults in our attack model are taken into account, but it is
possible to build nth-order countermeasures for any n.

I A random fault cannot induce a verification skip, whether test-based
of infective.

I Repeating verifications n times can force the attacker to need n+ 1
faults (one actually faulting the computation and the n others for
bypassing the verifications).
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Correcting Shamir’s Countermeasure

Algorithm: CRT-RSA with Shamir’s countermeasure

Input: Message M , key (p, q, d, iq) Output: Signature Md mod N , or error

1 Choose a small random integer r.

2 p′ = p · r
3 q′ = q · r

4 if p′ 6≡ 0 mod p or q′ 6≡ 0 mod q then return error

5 S′p = Md mod ϕ(p′) mod p′ // Intermediate signature in Zpr

6 S′q = Md mod ϕ(q′) mod q′ // Intermediate signature in Zqr

7 if S′p 6≡ S′q mod r then return error

8 Sp = S′p mod p // Retrieve intermediate signature in Zp

9 Sq = S′q mod q // Retrieve intermediate signature in Zq

10 S = Sq + q · (iq · (Sp − Sq) mod p) // Recombination in ZN

11 if S 6≡ S′p mod p or S 6≡ S′q mod q then return error

12 return S
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Simplifying Vigilant’s Countermeasure

I We simplified Vigilant’s countermeasure in 4 steps:
I simplification of Coron et al.’s corrections [CGM+10]

+ our simplifications from our PPREW’14 paper [RG14b];
I remove additional computation with random numbers;
I taking advantage of Vigilant’s clever sub-CRT embedding technique to

verify the 3 necessary invariants in one single step in the small subring;
I Bonus: transform the countermeasure to it’s infective variant.
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Algorithm: CRT-RSA with Vigilant’s countermeasure

Input: Message M , key (p, q, dp, dq, iq) Output: Signature Md mod N , or error
1 Choose a small random integer r, R1, R2, R3, R4. N = p · q
2 p′ = p · r2

3 ipr = p−1 mod r2

4 Mp = M mod p′

5 Bp = p · ipr ; Ap = 1− Bp mod p′

6 M′p = Ap ·Mp + Bp · (1 + r) mod p′ // CRT insertion of verification value in M′p
7 d′p = dp + R3 · (p− 1)

8 S′p = M′p
d′p mod ϕ(p′)

mod p′ // Intermediate signature in Z
pr2

9 if M′p 6≡ M mod p or d′p 6≡ dp mod p− 1 or Bp · S′p 6≡ Bp · (1 + d′p · r) mod p′ then return error

10 Spr = S′p − Bp · (1 + d′p · r − R1) // Verification value of S′p swapped with R1

11 q′ = q · r2

12 iqr = q−1 mod r2

13 Mq = M mod q′

14 Bq = q · iqr ; Aq = 1− Bq mod q′

15 M′q = Aq ·Mq + Bq · (1 + r) mod q′ // CRT insertion of verification value in M′q
16 d′q = dq + R4 · (q − 1)

17 S′q = M′q
d′q mod ϕ(q′)

mod q′ // Intermediate signature in Z
qr2

18 if M′q 6≡ M mod q or d′q 6≡ dq mod q − 1 or Bq · S′q 6≡ Bq · (1 + d′q · r) mod q′ then return error

19 Sqr = S′q − Bq · (1 + d′q · r − R2) // Verification value of S′q swapped with R2

20 if Mp 6≡ Mq mod r2 then return error

21 Sr = Sqr + q · (iq · (Spr − Sqr) mod p′) // Recombination checksum in Z
Nr2

22 S′ = S′q + q · (iq · (S′p − S′q) mod p′) // Recombination in Z
Nr2

23 if N·(Sr − R2 − q · iq · (R1 − R2)) 6≡ 0 mod Nr2 then return error
24 if q · iq 6≡ 1 mod p then return error
25 return S = Sr mod N // Retrieve result in ZN
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Algorithm: CRT-RSA with Vigilant’s countermeasure

Input: Message M , key (p, q, dp, dq, iq) Output: Signature Md mod N , or error
1 Choose a small random integer r, R1, R2, R3, R4. N = p · q
2 p′ = p · r2

3 ipr = p−1 mod r2

4 Mp = M mod p′

5 Bp = p · ipr ; Ap = 1− Bp mod p′

6 M′p = Ap ·Mp + Bp · (1 + r) mod p′ // CRT insertion of verification value in M′p
7 d′p = dp + R3 · (p− 1)

8 S′p = M′p
d′p mod ϕ(p′)

mod p′ // Intermediate signature in Z
pr2

9 if M′p 6≡ M mod p or d′p 6≡ dp mod p− 1 or Bp · S′p 6≡ Bp · (1 + d′p · r) mod p′ then return error

10 Spr = S′p − Bp · (1 + d′p · r − R1) // Verification value of S′p swapped with R1

11 q′ = q · r2

12 iqr = q−1 mod r2

13 Mq = M mod q′

14 Bq = q · iqr ; Aq = 1− Bq mod q′

15 M′q = Aq ·Mq + Bq · (1 + r) mod q′ // CRT insertion of verification value in M′q
16 d′q = dq + R4 · (q − 1)

17 S′q = M′q
d′q mod ϕ(q′)

mod q′ // Intermediate signature in Z
qr2

18 if M′q 6≡ M mod q or d′q 6≡ dq mod q − 1 or Bq · S′q 6≡ Bq · (1 + d′q · r) mod q′ then return error

19 Sqr = S′q − Bq · (1 + d′q · r − R2) // Verification value of S′q swapped with R2

20 if Mp 6≡ Mq mod r2 then return error

21 Sr = Sqr + q · (iq · (Spr − Sqr) mod p′) // Recombination checksum in Z
Nr2

22 S′ = S′q + q · (iq · (S′p − S′q) mod p′) // Recombination in Z
Nr2

23 if pq·(Sr − R2 − q · iq · (R1 − R2)) 6≡ 0 mod Nr2 then return error

24 if q · iq 6≡ 1 mod p then return error

25 return S = Sr mod N // Retrieve result in ZN
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Algorithm: CRT-RSA with Vigilant’s countermeasure

Input: Message M , key (p, q, dp, dq, iq) Output: Signature Md mod N , or error
1 Choose a small random integer r, R1, R2. N = p · q
2 p′ = p · r2

3 ipr = p−1 mod r2

4 Mp = M mod p′

5 Bp = p · ipr ; Ap = 1− Bp mod p′

6 M′p = Ap ·Mp + Bp · (1 + r) mod p′ // CRT insertion of verification value in M′p

7 d′p = dp + R3 · (p− 1)

8 S′p = M′p
dp mod ϕ(p′) mod p′ // Intermediate signature in Z

pr2

9 if M′p 6≡ M mod p or Bp · S′p 6≡ Bp · (1 + dp · r) mod p′ then return error

10 Spr = S′p − Bp · (1 + dp · r − R1) // Verification value of S′p swapped with R1

11 q′ = q · r2

12 iqr = q−1 mod r2

13 Mq = M mod q′

14 Bq = q · iqr ; Aq = 1− Bq mod q′

15 M′q = Aq ·Mq + Bq · (1 + r) mod q′ // CRT insertion of verification value in M′q

16 d′q = dq + R4 · (q − 1)

17 S′q = M′q
dq mod ϕ(q′) mod q′ // Intermediate signature in Z

qr2

18 if M′q 6≡ M mod q or Bq · S′q 6≡ Bq · (1 + dq · r) mod q′ then return error

19 Sqr = S′q − Bq · (1 + dq · r − R2) // Verification value of S′q swapped with R2

20 if Mp 6≡ Mq mod r2 then return error

21 Sr = Sqr + q · (iq · (Spr − Sqr) mod p′) // Recombination checksum in Z
Nr2

22 S′ = S′q + q · (iq · (S′p − S′q) mod p′) // Recombination in Z
Nr2

23 if pq·(Sr − R2 − q · iq · (R1 − R2)) 6≡ 0 mod Nr2 then return error

24 if q · iq 6≡ 1 mod p then return error

25 return S = Sr mod N // Retrieve result in ZN
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Algorithm: CRT-RSA with Vigilant’s countermeasure

Input: Message M , key (p, q, dp, dq, iq) Output: Signature Md mod N , or
1 Choose a small random integer r. N = p · q
2 p′ = p · r2

3 ipr = p−1 mod r2

4 Mp = M mod p′

5 Bp = p · ipr ; Ap = 1− Bp mod p′

6 M′p = Ap ·Mp + Bp · (1 + r) mod p′ // CRT insertion of verification value in M′p

7 d′p = dp + R3 · (p− 1)

8 S′p = M′p
dp mod ϕ(p′) mod p′ // Intermediate signature in Z

pr2

9 if M′p + N 6≡ M mod p then return error

10 Spr = 1 + dp · r // Checksum in Z
r2

for S′p
11 q′ = q · r2

12 iqr = q−1 mod r2

13 Mq = M mod q′

14 Bq = q · iqr ; Aq = 1− Bq mod q′

15 M′q = Aq ·Mq + Bq · (1 + r) mod q′ // CRT insertion of verification value in M′q

16 d′q = dq + R4 · (q − 1)

17 S′q = M′q
dq mod ϕ(q′) mod q′ // Intermediate signature in Z

qr2

18 if M′q + N 6≡ M mod q then return error

19 Sqr = 1 + dq · r // Checksum in Z
r2

for S′q

20 if Mp 6≡ Mq mod r2 then return error

21 Sr = Sqr + q · (iq · (Spr − Sqr) mod p′) // Recombination checksum in Z
r2

22 S′ = S′q + q · (iq · (S′p − S′q) mod p′) // Recombination in Z
Nr2

23 if S′ 6≡ Sr mod r2 then return error

24 if q · iq 6≡ 1 mod p then return error

25 return S = S′ mod N // Retrieve result in ZN
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Algorithm: CRT-RSA with Vigilant’s countermeasure

Input: Message M , key (p, q, dp, dq, iq) Output: Signature Md mod N , or a random value in ZN
1 Choose a small random integer r. N = p · q
2 p′ = p · r2

3 ipr = p−1 mod r2

4 Mp = M mod p′

5 Bp = p · ipr ; Ap = 1− Bp mod p′

6 M′p = Ap ·Mp + Bp · (1 + r) mod p′ // CRT insertion of verification value in M′p

7 d′p = dp + R3 · (p− 1)

8 S′p = M′p
dp mod ϕ(p′) mod p′ // Intermediate signature in Z

pr2

9 cp = M′p + N −M + 1 mod p

10 Spr = 1 + dp · r // Checksum in Z
r2

for S′p
11 q′ = q · r2

12 iqr = q−1 mod r2

13 Mq = M mod q′

14 Bq = q · iqr ; Aq = 1− Bq mod q′

15 M′q = Aq ·Mq + Bq · (1 + r) mod q′ // CRT insertion of verification value in M′q

16 d′q = dq + R4 · (q − 1)

17 S′q = M′q
dq mod ϕ(q′) mod q′ // Intermediate signature in Z

qr2

18 cq = M′q + N −M + 1 mod q

19 Sqr = 1 + dq · r // Checksum in Z
r2

for S′q

20 if Mp 6≡ Mq mod r2 then return error

21 Sr = Sqr + q · (iq · (Spr − Sqr) mod p′) // Recombination checksum in Z
r2

22 S′ = S′q + q · (iq · (S′p − S′q) mod p′) // Recombination in Z
Nr2

23 cS = S′ − Sr + 1 mod r2

24 if q · iq 6≡ 1 mod p then return error

25 return S = S′cpcqcS mod N // Retrieve result in ZN
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Generating High-Order Countermeasures

Algorithm: Generation of CRT-RSA with Vigilant’s countermeasure at order D

Input: order D Output: CRT-RSA algorithm protected against fault injection attack of order D
1 print Choose a small random integer r.
2 print N = p · q
3 print p′ = p · r2 ; ipr = p−1 mod r2 ; Mp = M mod p′ ; Bp = p · ipr ; Ap = 1− Bp mod p′

4 print M′p = Ap ·Mp + Bp · (1 + r) mod p′

5 print q′ = q · r2 ; iqr = q−1 mod r2 ; Mq = M mod q′ ; Bq = q · iqr ; Aq = 1− Bq mod q′

6 print M′q = Aq ·Mq + Bq · (1 + r) mod q′

7 print S′p = M′p
dp mod ϕ(p′) mod p′

8 print S′q = M′q
dq mod ϕ(q′) mod q′

9 print Spr = 1 + dp · r
10 print Sqr = 1 + dq · r
11 print Sr = Sqr + q · (iq · (Spr − Sqr) mod p′)
12 print S′ = S′q + q · (iq · (S′p − S′q) mod p′)

13 for i← 1 to D do
14 print cp; print i; print = M′p + N −M + 1 mod p

15 print cq ; print i; print = M′q + N −M + 1 mod q

16 print cS ; print i; print = S′ − Sr + 1 mod r2

17 end
18 print c∗ =
19 for i← 1 to D do
20 print cp; print i; print ×
21 print cq ; print i; print ×
22 print cS ; print i; print ×
23 end
24 print 1

25 print return S = Sc∗ mod N
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Second Results

I Formal studies of these countermeasures allowed to understand their
working factor.

→ We were able to fix the broken ones and to simplify many of them
(e.g., original Vigilant’s countermeasure: broken, 9 tests, 5 random numbers;

our fixed and simplified version: working, 3 tests, 1 random number).

→ We were able to provide a recipe for high-order countermeasures.

I More importantly, the working factor is actually not tied to the
BellCoRe attack, nor to the CRT-RSA algorithm.

I It is possible to abstract it and get a recipe for cost-effectively
verifying the integrity of any arithmetic computation.
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Integrity Verification

I Idea: verify the integrity of the computation by introducing
redundancy.

I Simply repeating the computation and comparing results is bad:
(a) it is too expensive, and
(b) nothing stops the attacker from injecting the same fault twice.

I Thus, existing countermeasures optimize this idea in different ways.
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Entanglement

I The entanglement protection scheme solves both issues, by:
I lifting the computation to an over-structure (a direct product) allowing

(a) to project the result back onto the original structure, and
(b) to project a checksum onto a smaller structure (e.g., int32-sized);

I performing in parallel the same computation is the smaller structure;
I both the checksum and the smaller result should be equal.

I The redundant part of the computation is almost free (arithmetic
with 32-bit vs. 2,048-bit numbers).

I It is very hard to precisely fault the small computation to produce a
consistent value modification.

I Limitation: possible collisions in the small structure.
Mitigated by the possibility to use several different small structures.
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enredo

I At IMDEA Software Institute (Madrid, Spain), I developed a compiler
called enredo, while supervised by Gilles Barthe, François Dupressoir
and Pierre-Yves Strub.

I Automated insertion of the entanglement countermeasure into
arbitrary code.

⇒ http://pablo.rauzy.name/sensi/enredo.html

I Short demo.
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Perspectives

I We already have:
I an executable code output (Python),
I a correctness proof of the code transformation.

I Benchmark of the cost of the countermeasure.

I Security proof.

I Protected implementations of currently unprotected algorithms.

I Practical lab tests.
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That was it. Questions?
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