
Formally Proved Security of Automatically Protected
Software Against Physical Attacks

Pablo Rauzy
rauzy@enst.fr

advisors: Sylvain Guilley, Jean-Luc Danger

Telecom ParisTech
LTCI / COMELEC / SEN

July 10, 2013

Pablo Rauzy (Telecom ParisTech) Side Channel Software Countermeasures July 10, 2013 1 / 20



Physical attacks

There are two main categories of physical attacks:

I side channel attacks, which are passive,

I fault injection attacks, which are active.

Pablo Rauzy (Telecom ParisTech) Side Channel Software Countermeasures July 10, 2013 2 / 20



Physical attacks

Side channel attack

A side channel attack is any attack based on information gained from the
physical implementation of a cryptosystem, rather than brute force or
theoretical weaknesses in the algorithms.

Examples of side channel information:

I timing

I power consumption

I electromagnetic leaks

Pablo Rauzy (Telecom ParisTech) Side Channel Software Countermeasures July 10, 2013 3 / 20



Physical attacks

Fault injection attack

A fault injection attack consists in modifying parameters or intermediate
values of a cryptosystem’s computation in order for the final result of the
computation to leak sensitive information about the system, often by
comparing the compromised result with a correct one.

There are many form of fault injections:

I invasive / non-invasive

I destructive / non-destructive

I global / precise

Pablo Rauzy (Telecom ParisTech) Side Channel Software Countermeasures July 10, 2013 4 / 20



Formally proved security

Formally proved security against physical attacks is a relatively new topic.

I Cryptosystems’ software should be bug-free and rely as little as
possible on hand-written code for critical parts.

⇒ We need tools to formally assess the security of implementations, and
where possible automatically generate or insert countermeasures
against physical attacks.

Pablo Rauzy (Telecom ParisTech) Side Channel Software Countermeasures July 10, 2013 5 / 20



Formally proved security

Our projects

We are working on two projects:

I Automatically inserted and formally proved countermeasures against
side channel attacks.

I Formal proof of security against fault injection attacks.

In both cases, we apply our methods on real-world algorithms and
implementations.

Pablo Rauzy (Telecom ParisTech) Side Channel Software Countermeasures July 10, 2013 6 / 20



Side channel countermeasures

Side channel countermeasures can be classified in two categories:

I Those that use randomness to make the leakage statistically
independent from sensitive data (like masking).

I Those that make the leakage indistinguishable (like dual-rail with
precharge logic (dpl)).

Automated masking has already been explored but most efforts have yet to
be done for dpl.

Pablo Rauzy (Telecom ParisTech) Side Channel Software Countermeasures July 10, 2013 7 / 20



Side channel countermeasures

Masking

I Needs randomness (hard to formalize).

I Assumes shares are not interfering neither logically (opcode’s effect
depending on previous ones) nor physically (glitches, cross-coupling).

I Assumes the data and operations in the algorithm are embedded
within a group (for instance (Fn

2,⊕) for Boolean additive masking).

I Protection depends on the linearity of the operation.

I Masking S-Boxes is difficult in general.

Pablo Rauzy (Telecom ParisTech) Side Channel Software Countermeasures July 10, 2013 8 / 20



Side channel countermeasures

Dual-Rail with Precharge Logic (dpl)

I Assumes that (at least) two equivalent (in terms of leakage) resources
exist.

I Protection depends less on the algorithm.

I Algorithms can be bitsliced which leads to a simple model that
operates at the bit level.

Since it seems easier, we chose to start working on automatic insertion of
countermeasures with dpl.

Pablo Rauzy (Telecom ParisTech) Side Channel Software Countermeasures July 10, 2013 9 / 20



Side channel countermeasures

Formally proven countermeasures

We want to be able to formally prove two properties on automatically
applied countermeasures.

I The semantics of the code must not be unaltered by the
transformation that adds countermeasures (correctness).

⇒ Exactly what a formally proven compiler does.

I The countermeasure must be efficient (security).

⇒ We need formal models of the possible side channel leakages, and
then use them to prove that the obtained code is protected against
those leakages.

Moreover, being able to prove the security enable optimization.

Pablo Rauzy (Telecom ParisTech) Side Channel Software Countermeasures July 10, 2013 10 / 20



Our project against side channel attacks

I Automatically insert the dpl countermeasure in some arbitrary
assembly code.

I Formally prove that the resulting assembly code is protected.

I Apply our research to a real-world algorithm running on a real-world
system.

Pablo Rauzy (Telecom ParisTech) Side Channel Software Countermeasures July 10, 2013 11 / 20



Our project against side channel attacks

Automatic insertion of the dpl countermeasure

I We need to be able to manipulate any assembly code. For that we
designed a generalist assembly called AbstractASM that our tools
manipulate.

I AbstractASM is generalist enough for us to be able to easily map
instructions from most assembly one-to-one and back.

I AbstractASM instructions obey the following pattern:

opcode destination operand1 operand2

Pablo Rauzy (Telecom ParisTech) Side Channel Software Countermeasures July 10, 2013 12 / 20



Our project against side channel attacks / Automatic insertion of the dpl countermeasure

Workflow

Pablo Rauzy (Telecom ParisTech) Side Channel Software Countermeasures July 10, 2013 13 / 20



Our project against side channel attacks

Proving the resulting code leak-free

I We use the hamming distance leakage model.

I Using symbolic evaluation, we prove that each time a register or
memory cell is updated, the hamming distance between its old and
new values is constant, independent of sensitive value.

I This is done by executing the code on our AbstractCPU, which is
equipped to keep track of all possible leakage.

Pablo Rauzy (Telecom ParisTech) Side Channel Software Countermeasures July 10, 2013 14 / 20



Our project against side channel attacks / Proving the resulting code leak-free

AbstractCPU

I Instead of values, computation are carried using sets of possible
values.

I At the beginning each bits of the key and the cleartext can be 0 or 1
(or their DPL encoding).

I For each instruction all possible results given all the possible inputs
are computed.

I This allow to keep track of all the possible values for the hamming
distance each updates.

I If for each update there is at most one possible value, it means there
is no leakage.

Pablo Rauzy (Telecom ParisTech) Side Channel Software Countermeasures July 10, 2013 15 / 20



Our project against side channel attacks / Proving the resulting code leak-free

Case study

I We used our tools to protect an implementation of present written
in 8 bit AVR assembly.

I The resulting code was proved leak-free and ran successfully on the
AVR micro-controller.

Pablo Rauzy (Telecom ParisTech) Side Channel Software Countermeasures July 10, 2013 16 / 20



Our project against fault injection attacks

I We consider fault injection attacks consisting in changing the value of
intermediate variables in the computation.

I Find fault injection attacks on high-level model of cryptographic
algorithm.

I Or formally prove their absence.

Pablo Rauzy (Telecom ParisTech) Side Channel Software Countermeasures July 10, 2013 17 / 20



Our project against fault injection attacks

Finding fault injection attacks

I The idea is to model the computation of the algorithm using
datatypes representing the interesting properties of the numbers.

I Define which properties allow an attack.

I Check for each possible fault injection if it results in an effective
attack or not.

Pablo Rauzy (Telecom ParisTech) Side Channel Software Countermeasures July 10, 2013 18 / 20



Our project against fault injection attacks

Case study

I On the CRT-RSA algorithm model we are able to find the Bellcore
attack.

I Our goal is to model existing countermeasures and verify them with
our tool.

Pablo Rauzy (Telecom ParisTech) Side Channel Software Countermeasures July 10, 2013 19 / 20



That’s it. Questions?

Physical attacks
Side channel attack
Fault injection attack

Formally proved security
Our projects

Side channel countermeasures
Masking
Dual-Rail with Precharge Logic (dpl)
Formally proven countermeasures

Our project against side channel attacks
Automatic insertion of the dpl countermeasure

Workflow
Proving the resulting code leak-free

AbstractCPU
Case study

Our project against fault injection attacks
Finding fault injection attacks
Case study

Pablo Rauzy (Telecom ParisTech) Side Channel Software Countermeasures July 10, 2013 20 / 20


	Physical attacks
	Side channel attack
	Fault injection attack

	Formally proved security
	Our projects

	Side channel countermeasures
	Masking
	Dual-Rail with Precharge Logic (dpl)
	Formally proven countermeasures

	Our project against side channel attacks
	Automatic insertion of the dpl countermeasure
	Proving the resulting code leak-free

	Our project against fault injection attacks
	Finding fault injection attacks
	Case study


