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Introduction

My PhD started in October 2012. Since then, I have been working with Sylvain
Guilley and Jean-Luc Danger in the field of implementation security. More pre-
cisely, I try to increase the use of formal methods in this field, at the software
level since it is what I know and where I come from in my previous studies.
Implementation security is a very young subject (approximately 15 years old),
and a very practical one: a lot of industrial research-and-development / engi-
neering participate to the field, which explains why the use of formal methods
is not widespread, to say the least. I will explain why and how I aim to spread
the use of formal methods, but first I will give a quick overview of what is
implementation security.

When we say implementation security, we talk about actual, physical
implementations, but the security we are talking about is the one of what is
implemented!. Of course, we work on systems which security is important,
namely cryptosystems. It is obvious that cryptographic implementations should
not leak any information about the secrets that they are trying to protect.
What is less obvious however, is that even a perfect cryptographic algorithm
can leak information once it is implemented on a physical device, because of
the properties of the physical device itself: computing needs resources, and
the usage of these resources may give information on the computation. In-
deed, so-called side-channels such as power consumption, time, temperature,
or electro-magnetic radiation may directly depend on the running computation.
Attacks exploiting such bias are called side-channel attacks. They work very
well in practice; for instance, on an unprotected AES cryptoprocessor, it is pos-
sible to extract the full key in about 1000 side-channel measurements (refer to
http://www.dpacontest.org/v2/). Thus, it is mandatory to implement coun-
termeasures against them. Side-channel attacks are passive attacks, meaning
that only observation is needed to carry them out. When the attacker is able to
have an impact on the system, it is also possible to conduct active attacks. For
instance in the case of fault injection attacks, the goal is to modify the result

1Note however that in some threat-models the security of the implemented system and the
physical security of the device which implements it are tied together, but that’s not at all
what I'm working on.
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of the computation to get something which will leak information if the attacker
knows how to interpret it. Such attacks can be more or less invasive: faults
can be injected by voluntarily glitching the clock or the voltage (non-invasive)
or by using a laser to modify values in memory or registers at some point in the
computation (invasive).

The use of formal methods to study these attacks and the countermeasures
against them to be able to trust the cryptosystems seems obvious. Yet, their
use in our domain is timidly beginning only now. This can be explained by
several facts. First, this domain is very practical, and many advances come
from the industry rather than the academia, which means that they are more
of an engineering effort than research result. Indeed, many countermeasures are
developed by trial-and-error until they reach some sort of fixed-point, at which
time they are put in production. Most of the time, this is satisfactory enough
from an engineering point of view. Also, formal analysis requires a formal model
of the studied system, but there is a discrepancy between a proper modelization
and the complexity of an actual physical system which may seem like an obstacle.

This covers why I think it is important to spread the use of formal methods
in the field of implementation security. I intend my PhD to be a substantial
participation toward this end. This means my goals aim to address the reasons
why formal methods are not widely used yet. I aim at doing so by lifting several
scientific and technological barriers:

e Develop models adapted to the study of side-channel and fault injection
attacks and countermeasures, finding ways to avoid the discrepancy be-
tween the model and the actual implementation;

e Use these models to develop methods, and the tools which implement
them, that are easy to comprehend and use, and “sexy” enough to make
people want to use or mimic them;

e Show the necessity of formal methods by using the tools to break, prove,
and/or optimize existing countermeasures, thereby improving the state-
of-the-art.

In the rest of this report I will present the work I have done since the
beginning of my PhD and how I intend to pursue it in the coming months.

Formally Proved Security of Assembly Code Against Power
Analysis

I started my work with the study of power analysis software countermeasures.
My goal was to have a tool which would be able to automatically protect arbi-
trary assembly code against power analysis attacks, while provably preserving
the semantics of the code, and which would output a provably protected code.

Power consumption is traditionally modeled by Hamming weight of values
or Hamming distance of updates of values [KJJ99]. This modelization is not
perfect but it works well enough in practice and is used to carry out real-world
power analysis attacks.

There are two main types of countermeasures against power analysis: “pal-
liative” versus “curative”. The two defense strategies are 1. to make the leakage
constant, irrespective of the manipulated data (hiding or balancing [MOPOG,
Chp. 7] strategy), or 2. to make the leakage as decorrelated from the manipu-
lated data (masking [MOP06, Chp. 9] strategy) as possible. The second strategy,



masking, relies on randomness which is a strong requirement and is hard to cap-
ture formally. The first strategy, balancing, appears to have a clear invariant
(constant leakage) and a software implementation of balancing using dual-rail
with precharge logic (DPL [TV06]) had been developed by our lab [HDD11]. So
I naturally went with the DPL balancing option.

The DPL countermeasure consists in computing on a redundant represen-
tation: each bit b is implemented as a pair (Yraise, YTrue)- The bit pair is then
used in a protocol made up of two phases:

1. a precharge phase, during which all the bit pairs are zeroized (Yralse, YTrue) =

(0,0), such that the computation starts from a known reference state;
2. an evaluation phase, during which the pair (Yraise, Y1rue) is equal to (1,0)
if it carries the logical value 0, or (0, 1) if it carries the logical value 1.

The DPL has mostly been used as a hardware-level countermeasure, as it
was developed as such. However, it is possible to implement it in software, by
working at the bit level. By replacing each sensitive instruction with a DPL
macro which uses a look-up table to compute the same result as the original
instruction while respecting the DPL protocol.

Results. Idefined a generic assembly language and its semantics. It is generic
in that it uses a restricted set of very generic instructions that can be mapped
one-to-one to and from virtually any actual assembly language. This makes it
possible to work with a single assembly language, while still working on the ac-
tual implementation, thus avoiding the discrepancy between it and the model.
It permitted to develop a tool, called paioli, that is able to automatically DPLize
any bitsliced assembly code. Many block-ciphers are already available bitsliced
as it is a common optimization technique [Bih97]. The transformation has been
proved to be semantics preserving. Another part of the tool does a symbolic ex-
ecution of the resulting code which statically verifies that the security invariant
is well respected. The symbolic execution of the assembly code is carried out
using sets of possible values instead of actual values. Each bit of the sensitive
data (the clear text of the message and the encryption key) starts with a value
of {0,1} (or their DPL encoded counterparts) and each instruction computes
all the possible results given the sets of values of its operands. After each cycle,
the security invariant is verified: for each register, memory cell, an address bus
that has changed, the Hamming distance between any of its previous possible
values and any of its new possible values should be constant. If everything goes
well, the code is formally proved to be well-balanced.

Using this tool we were able to produce a provably protected implementa-
tion of the PRESENT [BKL™07] block-cipher’s encryption algorithm. However,
this is a software level proof, and when the code is run on actual, non-idealized
hardware, not all the bits leak the same amount (some physical bit may con-
sume more power than others). Thus, before DPLizing a code, it is important
to profile the hardware on which it will be implemented. This profiling allows to
choose the two bits which leak the more similarly, which will then be used as the
YTrue aNd Yparse in the DPL protocol to guarantee maximum security. I am cur-
rently working on this with Zakaria Najm using the DPL balanced PRESENT
on an AVR smartcard. Preliminary results are very promising. This work shows
that it is feasible to use formal methods in the field of implementation security
even when the security properties are physical rather than functional.



Publications. I gave a talk at the 2013 edition of the COSADE conference,
and presented a poster at the 2013 edition of the CHES conference. We posted
a preliminary version of the paper on the IACR ePrint Archive [RGN13]. Each
of these received a warm welcome and attracted the interest of researchers who
are already waiting for the final version of the paper to be published. The final
paper is soon to be completed and will be submitted to the 2014 edition of the
CHES conference.

Future work. I need to clean/rewrite the code and make it usable as it is
currently “research code” and no one except me can be expected to use it as
is. I will also make an attempt at automated bitslicing of arbitrary assembly
code, it will be interesting to explore what can be done automatically with a
reasonable complexity. Another interesting path to follow would be to try to
find optimizations which do not break the DPL protocol of balanced code, since
we have a tool able to statically verify the respect of the security invariant.

Formal Proofs of CRT-RSA Countermeasures Against Bell-
CoRe Attacks

Another subject I worked on is the formal proof of countermeasures against
the BellCoRe fault injection attack on CRT-RSA (RSA [RSAT78] optimized for
memory usage and computation time using the Chinese remainder theorem).

RSA is both an encryption and a signature scheme. It relies on the iden-
tity that for all message 0 < M < N, (M%) = M mod N, where d = e~!
mod ¢(N), by Euler’s theorem. For example, if Alice generates the signature
S = M9 mod N, then Bob can verify it by computing S¢ mod N, which must
be equal to M unless Alice is only pretending to know d. Therefore (N, d) is
called the private key, and (N, e) the public key.

In CRT-RSA, the private key is a more rich structure than simply (N, d): it
is actually a 5-tuple (p, ¢, dp, dy,1,), Where:

e d,=d mod (p—1),

e d;, =d mod (¢—1), and

e i, =¢ ' mod p.
The algorithm is presented in Alg. 1

Algorithm 1: Unprotected CRT-RSA

Input : Message M, key (p,q,dp,dq,iq)
Output: Signature M?¢ mod N

1 S, =M% modp // Signature modulo p
2 S, =M% mod q // Signature modulo ¢
3 5=S8,4+¢q-(ig-(Sp —Sy) mod p) // Recombination
4 return S

Injecting faults during the computation of CRT-RSA can yield malformed
signatures that expose the prime factors (p and ¢) of the public modulus (N =
p-q) [BDL97]. If the intermediate variable S, (resp. Sy) is returned faulted as

Sp (resp. Sy), then the attacker gets an erroneous signature S, and is able to
recover p (resp. q) as ged(N,S — S).



Notwithstanding, computing without the fourfold acceleration conveyed by
the CRT is definitely not an option in practical applications. Therefore, many
countermeasures have appeared that consist in step-wise internal checks during
the CRT computation.

Results. I wrote a tool? called finja which works within the framework of
modular arithmetic, which is the mathematical framework of CRT-RSA com-
putations. The tool allows a full fault coverage of the CRT-RSA algorithm,
thereby keeping the proof valid even if the code is transformed (e.g., optimized,
compiled, partitioned in software/hardware, or equipped with dedicated coun-
termeasures). The general idea is to represent the computation term as a tree
(just like the AST in a compiler or interpreter) which encodes the computation
properties. This term is then simplified by our tool. The simplification works
like a naive interpreter would, except that it is a pure symbolic interpretation
using rules from arithmetic in the Z ring and its Z, subrings. The tool also
knows about a few theorems, namely Fermat’s little theorem, its generalization
Euler’s theorem, the Chinese remainder theorem, and a particular case of the
binomial theorem. Fault injections in the computation term are simulated by
changing the properties of a subterm, thus impacting the simplification process.
The computation is given in a convenient high-level input language. Indeed, the
model of the computation can remain as abstract as pseudocode such as it is
usually employed in papers, especially for the computational parts: for instance
a fault in the implementation of the multiplication (or the exponentiation) is
either inoffensive, and we do not need to care about it, or it affects the result of
the multiplication (or the exponentiation), and our model takes it into account
without going into the details of how the multiplication (or exponentiation) is
computed. An attack success condition is also given and used on the term re-
sulting from the simplification to check whether the corresponding attack works
on it.

The tool was used to break implementations which were known to be broken
and to formally prove two others: that of Aumiiller et al. [ABFT02], and that
of Vigilant [Vig08] (a repaired version by Coron et al. [CGM™10]). Prior to
this work no existing BellCoRe countermeasures had been proved, except for a
specific implementation of the latter [CCGV13], but we found that the repaired
version included fixes for weaknesses that did not exist in the original version.
Indeed, these weaknesses had been introduced by eager speed-oriented opti-
mizations. We also found that 2 out of its 9 verifications were useless, and that
some added security against power analysis actually weaken the fault injections
resistance. This work shows the importance of using formal methods in the field
of implementation security, not only to be able to really trust cryptosystems,
but also to enable speed and security oriented optimizations.

Publications. A first paper [RG13] was accepted at the 2013 edition of the
PROOFS workshop and an extended version will appear in a future issue of the
JCEN journal. We have submitted a second paper to the 2014 edition of the
PPREW workshop.

2http://pablo.rauzy.name/sensi/finja.html
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Future work. The finja tool is only able to inject faults in the data and
cannot fault instructions yet, it would be interesting to explore this kind of fault
injections [HMER13]. The tool would also benefit a lot from the parallelization
of its computations: multiple-fault attacks can take very long to compute and
the different possible faults injections are entirely independent.

I will also work with Gilles Barthe and Frangois Dupressoir at the IMDEA
lab (Madrid, Spain) in the beginning of 2014 as they showed an interest in my
work on fault injection. We will try to use the EasyCrypt [BGZB09] tool that
they work on to do the same kind of formal proofs, and also to use program
synthesis techniques to automatically find countermeasures.

Sylvain and I will also work on a high-order variation of the Aumiiller coun-
termeasure which would be customizable to resist any order (multiple faults) of
fault injection attacks.

Other Perspectives

I would like to use finja to formally study fault injection attacks and counter-
measures on other cryptosystems than CRT-RSA, and to use paioli to protect
at least one other block-cipher, such as AES, on another hardware platform.
Apart from this and the future work I listed for the two subjects that I
already started to tackle, I have two ideas that I’d like to investigate:
e try to model the caching behavior of microprocessors and use the same
kind of symbolic execution techniques to formally study timing attacks;
e try to use a homomorphic cryptosystem such as the one of Paillier to mask
(against power analysis) its own computation.
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