
Formal Software Methods for Cryptosystems’
Implementation Security

Pablo Rauzy
rauzy@enst.fr

pablo.rauzy.name

Telecom ParisTech
LTCI / COMELEC / SEN

December 4, 2013

Pablo Rauzy (Telecom ParisTech) Formal Security for Implementations PhD Midterm Defense 1 / 51

pablo.rauzy.name


Implementation Security

I Security of the physical implementations of cryptosystems.

There are two main categories of physical attacks:

I side-channel attacks, which are passive,

I fault injection attacks, which are active.

Pablo Rauzy (Telecom ParisTech) Formal Security for Implementations PhD Midterm Defense 2 / 51



Implementation Security

Side-Channel Attacks

A side-channel attack is any attack based on information gained from the
physical implementation of a cryptosystem, rather than brute force or
theoretical weaknesses in the algorithms.

Examples of side-channel information:

I timing,

I power consumption,

I electromagnetic leaks.

Pablo Rauzy (Telecom ParisTech) Formal Security for Implementations PhD Midterm Defense 3 / 51



Implementation Security

Fault Injection Attacks

A fault injection attack consists in modifying parameters or intermediate
values of a cryptosystem’s computation to make the final result of the
computation leak sensitive information about the system, often by
comparing the compromised result with a correct one (differential fault
attack).

There are many form of fault injections:

I invasive / non-invasive,

I destructive / non-destructive,

I global / precise.

Pablo Rauzy (Telecom ParisTech) Formal Security for Implementations PhD Midterm Defense 4 / 51



Formal Methods

I Security of implementation is a relatively new topic
(about 15 years old).

I Formal study of the physical attacks and their countermeasures is still
confidential.

Pablo Rauzy (Telecom ParisTech) Formal Security for Implementations PhD Midterm Defense 5 / 51



Formal Methods

Are Seldom Used. . .

I Big participation of the industry to the field of implementation
security:

I more engineering than research;
I development of security by trial-and-error.

I Concrete, physical implementations appear to be too complex to
formally study:

I discrepancy between model and implementation;
I existing formal analysis tools work with functional properties, not

physical ones.

⇒ Thus, formal methods are seldom used in our field.

Pablo Rauzy (Telecom ParisTech) Formal Security for Implementations PhD Midterm Defense 6 / 51



Formal Methods

. . . But are a Necessity

I Cryptosystems’ software should be bug-free and rely as little as
possible on hand-written code for critical parts.

I Moreover, being able to prove the security enable (often much
needed) speed-oriented and security-oriented optimizations.

⇒ We need tools to formally assess the security of implementations, and
where possible automatically generate or insert countermeasures
against physical attacks.

Pablo Rauzy (Telecom ParisTech) Formal Security for Implementations PhD Midterm Defense 7 / 51



Implementation Security
Side-Channel Attacks
Fault Injection Attacks

Formal Methods
Are Seldom Used. . .
. . . But are a Necessity

Formally Proved Security of Assembly Code Against Power Analysis
Power Analysis
Power Analysis Countermeasures
Dual-Rail with Precharge Logic (DPL)
Formally Proven DPL Countermeasure
Automatic Insertion of the DPL Countermeasure
Formally Proving the Absence of Leakage
Results and Contributions

Formal Proofs of CRT-RSA Countermeasures Against BellCoRe Attacks
RSA
CRT-RSA
The BellCoRe Attack
Countermeasures
Shortcomings
Formal Analysis
Results and Contributions

Perspectives

Pablo Rauzy (Telecom ParisTech) Formal Security for Implementations PhD Midterm Defense 8 / 51



Formally Proved Security of Assembly Code Against Power Analysis

Power Analysis
Power Analysis Countermeasures
Dual-Rail with Precharge Logic (DPL)
Formally Proven DPL Countermeasure
Automatic Insertion of the DPL Countermeasure

Generic Assembly Language
Sensitive Instructions
Code Transformation
Correctness Proof of the Transformation

Formally Proving the Absence of Leakage
The Attacker
The Security Invariant
Computed Proof of Constant Activity
Hardware Characterization

Results and Contributions

Pablo Rauzy (Telecom ParisTech) Formal Security for Implementations PhD Midterm Defense 9 / 51



Formally Proved Security of Assembly Code Against Power Analysis

Power Analysis

I A form of side-channel attack in which the attacker measures the
power consumption of a cryptographic device.

I Simple Power Analysis (SPA).

I Differential Power Analysis [KJJ99] (DPA).

I Power consumption is often modeled by Hamming weight of values or
Hamming distance of values’ updates as it is very correlated with
actual measures.

Pablo Rauzy (Telecom ParisTech) Formal Security for Implementations PhD Midterm Defense 10 / 51



Formally Proved Security of Assembly Code Against Power Analysis

Power Analysis Countermeasures

I Thwarting side-channel analysis is complicated since an unprotected
implementation leaks at every step.

I Serious power analysis countermeasures can be classified in two
categories:

I Those that use randomness to make the leakage statistically
independent from sensitive data (masking).

I Those that make the leakage indistinguishable (balancing).

I Automated masking has already been explored but most efforts have
yet to be done for balancing.

I Randomness is a strong requirement and is hard to capture formally,
thus we chose to work with a balancing countermeasure, namely
dual-rail with precharge logic (DPL).

Pablo Rauzy (Telecom ParisTech) Formal Security for Implementations PhD Midterm Defense 11 / 51



Formally Proved Security of Assembly Code Against Power Analysis

Dual-Rail with Precharge Logic (DPL)

I The DPL countermeasure consists in computing on a redundant
representation: each bit b is implemented as a pair (yFalse, yTrue).

I The bit pair is then used in a protocol made up of two phases:

1. a precharge phase, during which all the bit pairs are zeroized
(yFalse, yTrue) = (0, 0), such that the computation starts from a known
reference state;

2. an evaluation phase, during which the pair (yFalse, yTrue) is equal to
(1, 0) if it carries the logical value 0, or (0, 1) if it carries the logical
value 1.

⇒ Two physical resources which have the same leakage properties have
to exist.

Pablo Rauzy (Telecom ParisTech) Formal Security for Implementations PhD Midterm Defense 12 / 51



Formally Proved Security of Assembly Code Against Power Analysis

Formally Proven DPL Countermeasure

I The semantics of the code must not be altered by the transformation
that adds the countermeasure (correctness).

I The countermeasure must be efficient (security).

⇒ We need formal models of the possible side-channel leakages, and
then use them to prove that the obtained code is protected against
those leakages.

Pablo Rauzy (Telecom ParisTech) Formal Security for Implementations PhD Midterm Defense 13 / 51



Formally Proved Security of Assembly Code Against Power Analysis

Automatic Insertion of the DPL Countermeasure

I We want to be able to transform any assembly code to make it
respect the DPL protocol.

I We want to prove that the transformation is correct.

Pablo Rauzy (Telecom ParisTech) Formal Security for Implementations PhD Midterm Defense 14 / 51



Formally Proved Security of Assembly Code Against Power Analysis / Automatic Insertion of the DPL Countermeasure

Generic Assembly Language

I We need to be able to manipulate any assembly code. For that we
designed a generalist assembly that our tools manipulate.

I It is generalist enough for us to be able to easily map instructions
from most assembly one-to-one and back.

I Instructions follow this pattern:

opcode destination operand1 operand2

Pablo Rauzy (Telecom ParisTech) Formal Security for Implementations PhD Midterm Defense 15 / 51



Formally Proved Security of Assembly Code Against Power Analysis / Automatic Insertion of the DPL Countermeasure

Sensitive Instructions

Sensitive value

A value is said sensitive if it depends on sensitive data. A sensitive data
depends on both the secret key and the cleartext (as usually admitted in
the “only computation leaks” paradigm; see for instance [RP10, §4.1]).

Sensitive instruction

A sensitive instruction is an instruction which may modify the Hamming
weight of a sensitive value.

Pablo Rauzy (Telecom ParisTech) Formal Security for Implementations PhD Midterm Defense 16 / 51



Formally Proved Security of Assembly Code Against Power Analysis / Automatic Insertion of the DPL Countermeasure

Code Transformation

I Bitslice code (in practice, use a bitsliced
implementation).

I Expand sensitive instructions to DPL macro.

I Transform all sensitive data into their DPL
encoded counterparts.

r1 ← r0

r1 ← a
r1 ← r1 ∧ 3
r1 ← r1 � 1
r1 ← r1 � 1
r2 ← r0

r2 ← b
r2 ← r2 ∧ 3
r1 ← r1 ∨ r2

r3 ← r0

r3 ← op[r1]
d ← r0

d ← r3

DPL macro for
d = a op b.

Pablo Rauzy (Telecom ParisTech) Formal Security for Implementations PhD Midterm Defense 17 / 51



Formally Proved Security of Assembly Code Against Power Analysis / Automatic Insertion of the DPL Countermeasure

Correctness Proof of the Transformation

Correct DPL transformation

Let S be a valid state of the system (values in registers and memory). Let
c be a sequence of instructions of the system. Let Ŝ be the state of the
system after the execution of c with state S , we denote that by S

c−→ Ŝ .
We write dpl(S) for the DPL state (with DPL encoded values of the 1s
and 0s in memory and registers) equivalent to the state S .
We say that c ′ is a correct DPL transformation of the code c if

S
c−→ Ŝ =⇒ dpl(S)

c ′−→ dpl(Ŝ).

I Proof for each instruction by exhaustive case enumeration that its
macro expansion is a correct DPL transformation;

I Proof by induction that any sequence of correct DPL transformations
is a correct DPL transformation.

Pablo Rauzy (Telecom ParisTech) Formal Security for Implementations PhD Midterm Defense 18 / 51



Formally Proved Security of Assembly Code Against Power Analysis

Formally Proving the Absence of Leakage

I We want to prove a security property on the code resulting from the
transformation.

I We need to show that the formal proof on the software can be
relevant on a concrete physical implementation.

Pablo Rauzy (Telecom ParisTech) Formal Security for Implementations PhD Midterm Defense 19 / 51



Formally Proved Security of Assembly Code Against Power Analysis / Formally Proving the Absence of Leakage

The Attacker

The attacker can measure the power consumption of parts of the
cryptosystem.

Leakage model

We model power consumption by the Hamming distance of values
updates, i.e., the number of bit flips. It is a commonly accepted model for
power analysis, for instance with DPA [KJJ99] or CPA [BCO04]. We write
H(a, b) the Hamming distance between the values a and b.

Pablo Rauzy (Telecom ParisTech) Formal Security for Implementations PhD Midterm Defense 20 / 51



Formally Proved Security of Assembly Code Against Power Analysis / Formally Proving the Absence of Leakage

The Security Invariant

The activity of a cryptosystem is said to be constant if its power
consumption does not depend on the sensitive data and is thus always the
same.

Constant activity

Formally, let P(s) be a program which has s as parameter (e.g., the key
and the cleartext). According to our leakage model, a program P(s) is of
constant activity if:

I for every values s1 and s2 of the parameter s, for each cycle i , for
every sensitive value v , v is updated at cycle i in the run of P(s1) if
and only if it is in the run of P(s2);

I whenever an instruction modifies some sensitive value from v to v ′,
then the value of H(v , v ′) does not depend on s.

Pablo Rauzy (Telecom ParisTech) Formal Security for Implementations PhD Midterm Defense 21 / 51



Formally Proved Security of Assembly Code Against Power Analysis / Formally Proving the Absence of Leakage

Computed Proof of Constant Activity

We want to statically determine if the code is correctly balanced.

I We use symbolic execution, to run the program independently of the
sensitive data.

I We compute on sets of values instead of values directly, so we do not
have to make hypothesis on the initial values of sensible data.

I Avoid combinatorial explosion thanks to bitslicing, as a value can
initially be only 1 or 0 or both (or their DPL encoded counterparts).

I We implemented an interpreter for our generic assembly language.

I Our interpreter is equipped to measure all the possible Hamming
distances of each value update.

I If for one of these value updates there are different possible Hamming
distances, then we consider that there is a leak of information.

I Otherwise, the code is proven well-balanced.

Pablo Rauzy (Telecom ParisTech) Formal Security for Implementations PhD Midterm Defense 22 / 51



Formally Proved Security of Assembly Code Against Power Analysis / Formally Proving the Absence of Leakage

Computed Proof of Constant Activity

We want to statically determine if the code is correctly balanced.

I We use symbolic execution, to run the program independently of the
sensitive data.

I We compute on sets of values instead of values directly, so we do not
have to make hypothesis on the initial values of sensible data.

I Avoid combinatorial explosion thanks to bitslicing, as a value can
initially be only 1 or 0 or both (or their DPL encoded counterparts).

I We implemented an interpreter for our generic assembly language.

I Our interpreter is equipped to measure all the possible Hamming
distances of each value update.

I If for one of these value updates there are different possible Hamming
distances, then we consider that there is a leak of information.

I Otherwise, the code is proven well-balanced.

Pablo Rauzy (Telecom ParisTech) Formal Security for Implementations PhD Midterm Defense 22 / 51



Formally Proved Security of Assembly Code Against Power Analysis / Formally Proving the Absence of Leakage

Hardware Characterization

I The DPL countermeasure relies on the fact that the pair of bits used
to store the DPL encoded values leak the same way.

I This property is generally not true in non-specialized hardware.

I However, using the two closest bits (in term of leakage) for the DPL
protocol still helps reaching a better immunity to power analysis
attacks.

I Using stochastic profiling [SLP05], or monobit CPA attack to measure
the Pearson correlation coefficient between the actual power
consumption of the targeted bit and the logical Hamming distance of
its updates, it is possible to find a pair of bits that have close leakage
properties and that are at suitable positions for the DPL protocol.

Pablo Rauzy (Telecom ParisTech) Formal Security for Implementations PhD Midterm Defense 23 / 51



Formally Proved Security of Assembly Code Against Power Analysis

Results and Contributions

I Design method to generate code provably protected against power
analysis, including a tool to automatically insert the DPL
countermeasure against power analysis, and a way to profile the
hardware on which it will be run for customization of the
countermeasure.

I A case study with a present encryption algorithm running on an
AVR smartcard.

I A paper that will be submitted to CHES 2014.

Pablo Rauzy (Telecom ParisTech) Formal Security for Implementations PhD Midterm Defense 24 / 51



Formal Proofs of CRT-RSA Countermeasures Against BellCoRe Attacks

RSA
CRT-RSA
The BellCoRe Attack

How it works?
Countermeasures

Shamir’s Countermeasure
Shamir’s Countermeasure / Algorithm
Aumüller et al.’s Countermeasure
Aumüller et al.’s Countermeasure / Algorithm
Vigilant’s Countermeasure
Vigilant’s Countermeasure / Algorithm

Shortcomings
Formal Analysis

CRT-RSA Computation
Fault Injection
Algorithm Description
finja
How finja Works?
Mathematical Framework
Testing Attacks

Results and Contributions

Pablo Rauzy (Telecom ParisTech) Formal Security for Implementations PhD Midterm Defense 25 / 51



Formal Proofs of CRT-RSA Countermeasures Against BellCoRe Attacks

RSA

RSA (Rivest, Shamir, Adleman)

RSA [RSA78] is an algorithm for public key cryptography. It can be used
as both an encryption and a signature algorithm.

It works as follows (for simplicity we omit the padding operations):

I Let m be the message, (N, e) the public key, and (N, d) the private
key such that d · e ≡ 1 mod ϕ(N).

I The signature S is computed by S ≡ md mod N.

I The signature can be verified by checking that m ≡ Se mod N.

Pablo Rauzy (Telecom ParisTech) Formal Security for Implementations PhD Midterm Defense 26 / 51



Formal Proofs of CRT-RSA Countermeasures Against BellCoRe Attacks

RSA

RSA (Rivest, Shamir, Adleman)

RSA [RSA78] is an algorithm for public key cryptography. It can be used
as both an encryption and a signature algorithm.

It works as follows (for simplicity we omit the padding operations):

I Let m be the message, (N, e) the public key, and (N, d) the private
key such that d · e ≡ 1 mod ϕ(N).

I The signature S is computed by S ≡ md mod N.

I The signature can be verified by checking that m ≡ Se mod N.

Pablo Rauzy (Telecom ParisTech) Formal Security for Implementations PhD Midterm Defense 26 / 51



Formal Proofs of CRT-RSA Countermeasures Against BellCoRe Attacks

CRT-RSA

CRT (Chinese Remainder Theorem)

CRT-RSA [Koç94] is an optimization of the RSA computation which
allows a fourfold speedup.

It works as follows:

I Let p and q be the primes from the key generation (N = p · q).
I These values are pre-computed (considered part of the private key):

I dp
.

= d mod (p − 1)
I dq

.
= d mod (q − 1)

I iq
.

= q−1 mod p

I S is then computed as follows:
I Sp = mdp mod p
I Sq = mdq mod q
I S = Sq + q · (iq · (Sp − Sq) mod p)

Pablo Rauzy (Telecom ParisTech) Formal Security for Implementations PhD Midterm Defense 27 / 51



Formal Proofs of CRT-RSA Countermeasures Against BellCoRe Attacks

CRT-RSA

CRT (Chinese Remainder Theorem)

CRT-RSA [Koç94] is an optimization of the RSA computation which
allows a fourfold speedup.

It works as follows:

I Let p and q be the primes from the key generation (N = p · q).
I These values are pre-computed (considered part of the private key):

I dp
.

= d mod (p − 1)
I dq

.
= d mod (q − 1)

I iq
.

= q−1 mod p

I S is then computed as follows:
I Sp = mdp mod p
I Sq = mdq mod q
I S = Sq + q · (iq · (Sp − Sq) mod p)

Pablo Rauzy (Telecom ParisTech) Formal Security for Implementations PhD Midterm Defense 27 / 51



Formal Proofs of CRT-RSA Countermeasures Against BellCoRe Attacks

The BellCoRe Attack

BellCoRe (Bell Communications Research)

The BellCoRe attack [BDL97] consists in revealing the secret primes p and
q by faulting the computation. It is very powerful as it works even with
very random faulting.

It works as follows:

I The intermediate variable Sp (resp. Sq) is faulted as Ŝp (resp. Ŝq).

I The attacker thus gets an erroneous signature Ŝ .

I The attacker can recover p (resp. q) as gcd(N, S − Ŝ).

Pablo Rauzy (Telecom ParisTech) Formal Security for Implementations PhD Midterm Defense 28 / 51



Formal Proofs of CRT-RSA Countermeasures Against BellCoRe Attacks

The BellCoRe Attack

BellCoRe (Bell Communications Research)

The BellCoRe attack [BDL97] consists in revealing the secret primes p and
q by faulting the computation. It is very powerful as it works even with
very random faulting.

It works as follows:

I The intermediate variable Sp (resp. Sq) is faulted as Ŝp (resp. Ŝq).

I The attacker thus gets an erroneous signature Ŝ .

I The attacker can recover p (resp. q) as gcd(N, S − Ŝ).

Pablo Rauzy (Telecom ParisTech) Formal Security for Implementations PhD Midterm Defense 28 / 51



Formal Proofs of CRT-RSA Countermeasures Against BellCoRe Attacks / The BellCoRe Attack

How it works?

For all integer x , gcd(N, x) can only take 4 values:

I 1, if N and x are co-prime,

I p, if x is a multiple of p,

I q, if x is a multiple of q,

I N, if x is a multiple of both p and q, i.e., of N.

Pablo Rauzy (Telecom ParisTech) Formal Security for Implementations PhD Midterm Defense 29 / 51



Formal Proofs of CRT-RSA Countermeasures Against BellCoRe Attacks / The BellCoRe Attack

How it works?

If Sp is faulted (i.e., replaced by Ŝp 6= Sp):

I S − Ŝ = q ·
(

(iq · (Sp − Sq) mod p)− (iq · (Ŝp − Sq) mod p)
)

⇒ gcd(N, S − Ŝ) = q

Pablo Rauzy (Telecom ParisTech) Formal Security for Implementations PhD Midterm Defense 29 / 51



Formal Proofs of CRT-RSA Countermeasures Against BellCoRe Attacks / The BellCoRe Attack

How it works?

If Sq is faulted (i.e., replaced by Ŝq 6= Sq):

I S − Ŝ ≡ (Sq − Ŝq)− (q mod p) · iq · (Sq − Ŝq) ≡ 0 mod p
(because (q mod p) · iq ≡ 1 mod p)

⇒ gcd(N, S − Ŝ) = p

Pablo Rauzy (Telecom ParisTech) Formal Security for Implementations PhD Midterm Defense 29 / 51



Formal Proofs of CRT-RSA Countermeasures Against BellCoRe Attacks / The BellCoRe Attack

How it works?

If Sq is faulted (i.e., replaced by Ŝq 6= Sq):

I S − Ŝ ≡ (Sq − Ŝq)− (q mod p) · iq · (Sq − Ŝq) ≡ 0 mod p
(because (q mod p) · iq ≡ 1 mod p)

⇒ gcd(N, S − Ŝ) = p

Pablo Rauzy (Telecom ParisTech) Formal Security for Implementations PhD Midterm Defense 29 / 51



Formal Proofs of CRT-RSA Countermeasures Against BellCoRe Attacks

Countermeasures

Several protections against the BellCoRe attacks have been proposed.

Some of them are given below:

I Obvious countermeasures: no CRT, or with signature verification;

I Shamir [Sha99];

I Aumüller et al. [ABF+02];

I Vigilant, original [Vig08] and with some corrections by Coron et
al. [CGM+10];

Pablo Rauzy (Telecom ParisTech) Formal Security for Implementations PhD Midterm Defense 30 / 51



Formal Proofs of CRT-RSA Countermeasures Against BellCoRe Attacks / Countermeasures

Shamir’s Countermeasure

I Introduces a small random number r , co-prime with p and q.

I Carries out computations modulo p′ = p · r and q′ = q · r .

⇒ Allows retrieval of the results by reduction modulo p and modulo q.

⇒ Enables verification by reduction modulo r .

Pablo Rauzy (Telecom ParisTech) Formal Security for Implementations PhD Midterm Defense 31 / 51



Formal Proofs of CRT-RSA Countermeasures Against BellCoRe Attacks / Countermeasures

Shamir’s Countermeasure / Algorithm

Input : Message m, key (p, q, d , iq), 32-bit random prime r
Output: Signature md mod N, or error if some fault injection is detected.

1 p′ = p · r
2 dp = d mod (p − 1) · (r − 1)

3 S ′p = mdp mod p′

4 q′ = q · r
5 dq = d mod (q − 1) · (r − 1)

6 S ′q = mdq mod q′

7 Sp = S ′p mod p

8 Sq = S ′q mod q

9 S = Sq + q · (iq · (Sp − Sq) mod p)

10 if S ′p 6≡ S ′q mod r then
11 return error
12 else
13 return S
14 end

Pablo Rauzy (Telecom ParisTech) Formal Security for Implementations PhD Midterm Defense 32 / 51



Formal Proofs of CRT-RSA Countermeasures Against BellCoRe Attacks / Countermeasures

Aumüller et al.’s Countermeasure

I Variation of Shamir’s countermeasure primarily intended to fix two
shortcomings:

I removes the need for d during the computation;
I checks the CRT recombination step.

I Uses asymmetrical verification (computations modulo p′ and q′

operate on two different objects).

I Also adds some verifications of the intermediate computations.

Pablo Rauzy (Telecom ParisTech) Formal Security for Implementations PhD Midterm Defense 33 / 51



Formal Proofs of CRT-RSA Countermeasures Against BellCoRe Attacks / Countermeasures

Aumüller et al.’s Countermeasure / Algorithm

Input : Message m, key (p, q, dp , dq , iq), 32-bit random prime t

Output : Signature md mod N, or error if some fault injection is detected.

1 p′ = p · t
2 d ′p = dp + random1 · (p − 1)

3 S ′p = md′p mod p′

4 if (p′ mod p 6= 0) or (d ′p 6≡ dp mod (p − 1)) then
5 return error
6 end

7 q′ = q · t
8 d ′q = dq + random2 · (q − 1)

9 S ′q = md′q mod q′

10 if (q′ mod q 6= 0) or (d ′q 6≡ dq mod (q − 1)) then
11 return error
12 end

13 Sp = S ′p mod p

14 Sq = S ′q mod q

15 S = Sq + q · (iq · (Sp − Sq) mod p)
16 if (S − S ′p 6≡ 0 mod p) or (S − S ′q 6≡ 0 mod q) then
17 return error
18 end

19 Spt = S ′p mod t

20 Sqt = S ′q mod t

21 dpt = d ′p mod (t − 1)

22 dqt = d ′q mod (t − 1)

23 if S
dqt
pt 6≡ S

dpt
qt mod t

then
24 return error
25 else
26 return S
27 end

Pablo Rauzy (Telecom ParisTech) Formal Security for Implementations PhD Midterm Defense 34 / 51



Formal Proofs of CRT-RSA Countermeasures Against BellCoRe Attacks / Countermeasures

Vigilant’s Countermeasure

I Different approach than Aumüller et al.’s one.

I All the CRT computation (even the recombination) is carried out in
an overring of ZNr2 of ZN .

I The Zr2 subring is used to make an additional check that uses the
Binomial theorem.

I “Formal proof of the FA-resistance of Vigilant’s scheme including our
countermeasures is still an open (and challenging) issue.”

Pablo Rauzy (Telecom ParisTech) Formal Security for Implementations PhD Midterm Defense 35 / 51



Formal Proofs of CRT-RSA Countermeasures Against BellCoRe Attacks / Countermeasures

Vigilant’s Countermeasure / Algorithm

Input : Message M, key (p, q, dp , dq , iq).

Output: Signature Md mod N.
1 Choose random numbers r , R1, R2, R3, and R4.

2 p′ = pr2

3 Mp = M mod p′

4 ipr = p−1 mod r2

5 Bp = p · ipr
6 Ap = 1− Bp mod p′

7 M′p = ApMp + Bp · (1 + r) mod p′

8 if M′p 6≡ M mod p then

9 return error
10 end

11 d′p = dp + R1 · (p − 1)

12 Spr = M′p
d′p mod p′

13 if d′p 6≡ dp mod p − 1 then

14 return error
15 end

16 if BpSpr 6≡ Bp · (1 + d′p r) mod p′ then
17 return error
18 end

19 S′p = Spr − Bp · (1 + d′p r − R3)

20 q′ = qr2

21 Mq = M mod q′

22 iqr = q−1 mod r2

23 Bq = q · iqr

24 Aq = 1− Bq mod q′

25 M′q = AqMq + Bq · (1 + r) mod q′

26 if M′q 6≡ M mod q then

27 return error
28 end

29 if Mp 6≡ Mq mod r2 then
30 return error
31 end

32 d′q = dq + R2 · (q − 1)

33 Sqr = M′q
d′q mod q′

34 if d′q 6≡ dq mod q − 1 then

35 return error
36 end

37 if BqSqr 6≡ Bq · (1 + d′q r) mod q′ then
38 return error
39 end

40 S′q = Sqr − Bq · (1 + d′q r − R4)

41 S = S′q + q · (iq · (S′p − S′q) mod p′)

42 N = pq

43 if N · (S − R4 − q · iq · (R3 − R4)) 6≡ 0 mod Nr2 then
44 return error
45 end

46 if q · iq 6≡ 1 mod p then
47 return error
48 end
49 return S mod N

Pablo Rauzy (Telecom ParisTech) Formal Security for Implementations PhD Midterm Defense 36 / 51



Formal Proofs of CRT-RSA Countermeasures Against BellCoRe Attacks

Shortcomings

I All these countermeasures are hand crafted iteratively, by
trial-and-error.

I No proof of their efficiency is given.

Pablo Rauzy (Telecom ParisTech) Formal Security for Implementations PhD Midterm Defense 37 / 51



Formal Proofs of CRT-RSA Countermeasures Against BellCoRe Attacks

Formal Analysis

I The goal is to make sure countermeasures are trustable.

I We want to cover a very general attacker model.

I We want our proof to apply to any implementation that is a
refinement of the abstract algorithm.

Pablo Rauzy (Telecom ParisTech) Formal Security for Implementations PhD Midterm Defense 38 / 51



Formal Proofs of CRT-RSA Countermeasures Against BellCoRe Attacks / Formal Analysis

CRT-RSA Computation

I A CRT-RSA computation takes as input a message m, assumed
known by the attacker, and a secret key (p, q, dp, dq, iq).

I The implementation is free to instantiate any variable, but must
return a result equal to: S = Sq + q · (iq · (Sp − Sq) mod p), where:

I Sp = mdp mod p, and
I Sq = mdq mod q.

Pablo Rauzy (Telecom ParisTech) Formal Security for Implementations PhD Midterm Defense 39 / 51



Formal Proofs of CRT-RSA Countermeasures Against BellCoRe Attacks / Formal Analysis

Fault Injection

I An attacker can request a CRT-RSA computation.

I During the computation, the attacker can fault any intermediate
value.

I A faulted value can be zero or random.

I The attacker can read the final result of the computation.

I Faulting can occur in the global memory (permanent fault) or in a
local register or bus (transient fault).

I The control flow graph is untouched.

Pablo Rauzy (Telecom ParisTech) Formal Security for Implementations PhD Midterm Defense 40 / 51



Formal Proofs of CRT-RSA Countermeasures Against BellCoRe Attacks / Formal Analysis

Fault Injection

I An attacker can request a CRT-RSA computation.

I During the computation, the attacker can fault any intermediate
value.

I A faulted value can be zero or random.

I The attacker can read the final result of the computation.

I Faulting can occur in the global memory (permanent fault) or in a
local register or bus (transient fault).

I The control flow graph is untouched.

Pablo Rauzy (Telecom ParisTech) Formal Security for Implementations PhD Midterm Defense 40 / 51



Formal Proofs of CRT-RSA Countermeasures Against BellCoRe Attacks / Formal Analysis

Algorithm Description

I Low level enough for the attack to work if protections are not
implemented.

I Intermediate variable that would appear during refinement could be
the target of an attack, but such a fault would propagate to an
intermediate variable of the high level description.

Pablo Rauzy (Telecom ParisTech) Formal Security for Implementations PhD Midterm Defense 41 / 51



Formal Proofs of CRT-RSA Countermeasures Against BellCoRe Attacks / Formal Analysis

finja

I Input:
I A high level description of the computation, and
I an attack success condition.

I Output:
I Either the list of possible attacks, or
I a proof that the computation is resistant to fault injections.

I Source code (including examples) is available at
http://pablo.rauzy.name/sensi/finja.html.

Pablo Rauzy (Telecom ParisTech) Formal Security for Implementations PhD Midterm Defense 42 / 51

http://pablo.rauzy.name/sensi/finja.html


Formal Proofs of CRT-RSA Countermeasures Against BellCoRe Attacks / Formal Analysis

How finja Works?

I The description of the computation is transformed into a term.
I The term is a tree which encodes:

I dependencies between the intermediate values, and
I properties of the intermediate values (such as being null, being null modulo

another term, or being a multiple of another term).

I Each intermediate value (subterms of the tree) can be faulted, in such
case its properties become:

I nothing, in the case of a randomizing fault, or
I being null, in the case of a zeroing fault.

Pablo Rauzy (Telecom ParisTech) Formal Security for Implementations PhD Midterm Defense 43 / 51



Formal Proofs of CRT-RSA Countermeasures Against BellCoRe Attacks / Formal Analysis

How finja Works?

I The description of the computation is transformed into a term.
I The term is a tree which encodes:

I dependencies between the intermediate values, and
I properties of the intermediate values (such as being null, being null modulo

another term, or being a multiple of another term).

I Each intermediate value (subterms of the tree) can be faulted, in such
case its properties become:

I nothing, in the case of a randomizing fault, or
I being null, in the case of a zeroing fault.

Pablo Rauzy (Telecom ParisTech) Formal Security for Implementations PhD Midterm Defense 43 / 51



Formal Proofs of CRT-RSA Countermeasures Against BellCoRe Attacks / Formal Analysis

Mathematical Framework

finja uses symbolic computation to simplify the term.

It uses the computed properties of the intermediate values and rules from:

I arithmetic in the Z ring;

I modular arithmetic in the Z/nZ rings;
I plus a few theorems:

I little Fermat’s theorem;
I its generalization, i.e., Euler’s theorem;
I Chinese remainder theorem;
I a special case of the Binomial theorem.

Pablo Rauzy (Telecom ParisTech) Formal Security for Implementations PhD Midterm Defense 44 / 51



Formal Proofs of CRT-RSA Countermeasures Against BellCoRe Attacks / Formal Analysis

Testing Attacks

I Simplified faulted terms are then fed into the attack success condition.

I The attack success condition is then simplified to either true or false.

Pablo Rauzy (Telecom ParisTech) Formal Security for Implementations PhD Midterm Defense 45 / 51



Formal Proofs of CRT-RSA Countermeasures Against BellCoRe Attacks

Results and Contributions

I finja

I We have a formal proof of the resistance of Aumüller et al.’s and
Vigilant’s countermeasures against the BellCoRe attack by fault
injection on CRT-RSA.

I We also have simplified Vigilant’s countermeasures.

I Three publications: PROOFS 2013 [RG13], JCEN, PPREW 2014.

Pablo Rauzy (Telecom ParisTech) Formal Security for Implementations PhD Midterm Defense 46 / 51



Perspectives

Power analysis:

I Clean/rewrite and release tools.

I Use the same methods for other algorithms and other hardware.

I Automated bitslicing.

I Cache behavior model for timing attack.

Fault injection:

I Fault injections in the instructions [HMER13].

I Using EasyCrypt [BGZB09] and program synthesis to find
countermeasures.

I High-order fault injections countermeasures.

Pablo Rauzy (Telecom ParisTech) Formal Security for Implementations PhD Midterm Defense 47 / 51



PerspectivesReferences I

Christian Aumüller, Peter Bier, Wieland Fischer, Peter Hofreiter, and Jean-Pierre Seifert.

Fault Attacks on RSA with CRT: Concrete Results and Practical Countermeasures.
In Burton S. Kaliski, Jr., Çetin Kaya Koç, and Christof Paar, editors, CHES, volume 2523 of Lecture Notes in Computer
Science, pages 260–275. Springer, 2002.

Éric Brier, Christophe Clavier, and Francis Olivier.

Correlation Power Analysis with a Leakage Model.
In CHES, volume 3156 of LNCS, pages 16–29. Springer, August 11–13 2004.
Cambridge, MA, USA.

Dan Boneh, Richard A. DeMillo, and Richard J. Lipton.

On the Importance of Checking Cryptographic Protocols for Faults.
In Proceedings of Eurocrypt’97, volume 1233 of LNCS, pages 37–51. Springer, May 11-15 1997.
Konstanz, Germany. DOI: 10.1007/3-540-69053-0 4.

Gilles Barthe, Benjamin Grégoire, and Santiago Zanella-Béguelin.

Formal certification of code-based cryptographic proofs.
In 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2009, pages 90–101.
ACM, 2009.

Jean-Sébastien Coron, Christophe Giraud, Nicolas Morin, Gilles Piret, and David Vigilant.

Fault Attacks and Countermeasures on Vigilant’s RSA-CRT Algorithm.
In Luca Breveglieri, Marc Joye, Israel Koren, David Naccache, and Ingrid Verbauwhede, editors, FDTC, pages 89–96.
IEEE Computer Society, 2010.

Karine Heydemann, Nicolas Moro, Emmanuelle Encrenaz, and Bruno Robisson.

Formal Verification of a Software Countermeasure Against Instruction Skip Attacks.
Cryptology ePrint Archive, Report 2013/679, 2013.
http://eprint.iacr.org/.

Pablo Rauzy (Telecom ParisTech) Formal Security for Implementations PhD Midterm Defense 48 / 51

http://eprint.iacr.org/


PerspectivesReferences II

Paul C. Kocher, Joshua Jaffe, and Benjamin Jun.

Differential Power Analysis.
In Proceedings of CRYPTO’99, volume 1666 of LNCS, pages 388–397. Springer-Verlag, 1999.

Sung-Kyoung Kim, Tae Hyun Kim, Dong-Guk Han, and Seokhie Hong.

An efficient CRT-RSA algorithm secure against power and fault attacks.
J. Syst. Softw., 84:1660–1669, October 2011.

Çetin Kaya Koç.

High-Speed RSA Implementation, November 1994.
Version 2, ftp://ftp.rsasecurity.com/pub/pdfs/tr201.pdf.

Pablo Rauzy and Sylvain Guilley.

A Formal Proof of Countermeasures Against Fault Injection Attacks on CRT-RSA.
Cryptology ePrint Archive, Report 2013/506, 2013.
http://eprint.iacr.org/.

Matthieu Rivain and Emmanuel Prouff.

Provably Secure Higher-Order Masking of AES.
In Stefan Mangard and François-Xavier Standaert, editors, CHES, volume 6225 of LNCS, pages 413–427. Springer, 2010.

Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman.

A Method for Obtaining Digital Signatures and Public-Key Cryptosystems.
Commun. ACM, 21(2):120–126, 1978.

Adi Shamir.

Method and apparatus for protecting public key schemes from timing and fault attacks, November 1999.
US Patent Number 5,991,415; also presented at the rump session of EUROCRYPT ’97.

Pablo Rauzy (Telecom ParisTech) Formal Security for Implementations PhD Midterm Defense 49 / 51

ftp://ftp.rsasecurity.com/pub/pdfs/tr201.pdf
http://eprint.iacr.org/


PerspectivesReferences III

Werner Schindler, Kerstin Lemke, and Christof Paar.

A Stochastic Model for Differential Side Channel Cryptanalysis.
In LNCS, editor, CHES, volume 3659 of LNCS, pages 30–46. Springer, Sept 2005.
Edinburgh, Scotland, UK.

David Vigilant.

RSA with CRT: A New Cost-Effective Solution to Thwart Fault Attacks.
In Elisabeth Oswald and Pankaj Rohatgi, editors, CHES, volume 5154 of Lecture Notes in Computer Science, pages
130–145. Springer, 2008.

Pablo Rauzy (Telecom ParisTech) Formal Security for Implementations PhD Midterm Defense 50 / 51



PerspectivesThat’s it. Questions?

Implementation Security
Side-Channel Attacks
Fault Injection Attacks

Formal Methods
Are Seldom Used. . .
. . . But are a Necessity

Formally Proved Security of Assembly Code Against Power Analysis
Power Analysis
Power Analysis Countermeasures
Dual-Rail with Precharge Logic (DPL)
Formally Proven DPL Countermeasure
Automatic Insertion of the DPL Countermeasure
Formally Proving the Absence of Leakage
Results and Contributions

Formal Proofs of CRT-RSA Countermeasures Against BellCoRe Attacks
RSA
CRT-RSA
The BellCoRe Attack
Countermeasures
Shortcomings
Formal Analysis
Results and Contributions

Perspectives

rauzy@enst.fr

Pablo Rauzy (Telecom ParisTech) Formal Security for Implementations PhD Midterm Defense 51 / 51


	Implementation Security
	Side-Channel Attacks
	Fault Injection Attacks

	Formal Methods
	Are Seldom Used…
	… But are a Necessity

	Formally Proved Security of Assembly Code Against Power Analysis
	Power Analysis
	Power Analysis Countermeasures
	Dual-Rail with Precharge Logic (DPL)
	Formally Proven DPL Countermeasure
	Automatic Insertion of the DPL Countermeasure
	Formally Proving the Absence of Leakage
	Results and Contributions

	Formal Proofs of CRT-RSA Countermeasures Against BellCoRe Attacks
	RSA
	CRT-RSA
	The BellCoRe Attack
	Countermeasures
	Shortcomings
	Formal Analysis
	Results and Contributions

	Perspectives

