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Research Questions

I Protection against this kind of attacks?

I Proof of the protection?

I Automation of the protection? Of the proof?
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Physical Attacks

I Fault injection attacks:
I introduced in 1996 by Boneh, DeMillo, and Lipton.

I Side-channel attacks:
I introduced in 1996 by Kocher.
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Physical Attacks
Countermeasures

I Since then, many countermeasures have been developed:
I at hardware- and software-level,
I mostly in the industry, but also in academia.

I However, virtually all of them are a matter of artisanal work:
I there is no automation,
I parameter choices are scarcely motivated,
I there are seldom rigorous security proofs.

Pablo Rauzy (Telecom ParisTech) PhD Defense 2015-07-13 10 / 60



Formal Methods

I Use tools from mathematics and theoretical computer science:
I prove that systems respect some functional and security properties,
I automatize the proof.

I Enable optimization:
I security is costly,
I mechanized proofs can be used as non-regression tests.
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Formal Methods
Implementation Security

I Formal methods are uncommon in the cryptologic community:
I cryptology is a fast-moving field,
I animated by many engineers and hackers.

I And even more unusual for security against physical attacks:
I even more engineering (e.g., trial-and-error development),
I physical behavior seemingly difficult to model.
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Formal Methods
Previous Works

I However, a few attempts have been made before I started my PhD.

I Proofs:
I Rivain and Prouff (2010): provable masking.
I Christofi et al. (2012): proved BellCoRe countermeasure.

I Automation:
I Bayrak et al. (2011): automatic random precharging.
I Moss et al. (2012): assisted masking.
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Contributions

1. Proof and automation of a generic side-channel countermeasure.

2. Proof and simplifications of fault injection countermeasures.

3. Automation of a proven generic fault injection countermeasure.
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Contributions
1. paioli

I Proof and automation of a balancing countermeasure:
I null side-channel signal-to-noise ratio,
I i.e., constant leakage,
I using Dual-rail with Precharge Logic in software.

I Automation of the (proven correct) code transformation.

I Automation of the security proof:
I symbolic execution ensures the constant-leakage property holds.
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Contributions
2. finja

I Formal study of CRT-RSA countermeasures against fault attacks:
I security proofs,
I optimization (speed, number of tests, randomness requirement),
I symbolic evaluation by term rewriting in an arithmetic framework.

I Classification of a family of existing countermeasures:
I extract protection principles from the employed techniques,
I design method to resist an arbitrary (but fixed) number of faults.
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Contributions
3. enredo

I Extraction of the principles of CRT-RSA countermeasures:
I integrity verification,
I independent from the fault model,
I independent from the algorithm,
I applicable to all asymmetric cryptography.

I Security proof of the generic countermeasure.

I Automation of the (proved correct) code transformation:
I protection of previously unprotected (but attacked) algorithms.
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Towards Generic Countermeasures Against Fault Injection Attacks

— Introduction

— Towards Generic Countermeasures Against Fault Injection Attacks
— RSA, CRT-RSA, the BellCoRe attack, countermeasures.
— Formal study, finja, proved countermeasures.
— Classification of countermeasures, building better countermeasures.
— Integrity verification, enredo, generic countermeasures.

— Conclusions and Perspectives
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Towards Generic Countermeasures Against Fault Injection Attacks
RSA

RSA (Rivest, Shamir, Adleman) Definition

RSA is an algorithm for public key cryptography. It can be used as both an
encryption and a signature algorithm.

I Let M be the message,
(N , e) the public key, and
(N , d) the private key,
such that d · e ≡ 1 mod ϕ(N ).

I The signature S is computed by S ≡ M d mod N .
I The signature can be verified by checking that M ≡ Se mod N .
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Towards Generic Countermeasures Against Fault Injection Attacks
CRT-RSA

CRT (Chinese Remainder Theorem) Definition

CRT-RSA is an optimization of the RSA computation which allows a
fourfold speedup.

I Let p and q be the primes from the key generation (N = p · q).

I These values are pre-computed (considered part of the private key):
I dp

.= d mod (p − 1)
I dq

.= d mod (q − 1)
I iq

.= q−1 mod p

I S is then computed as follows:
I Sp = M dp mod p
I Sq = M dq mod q
I S = Sq + q · (iq · (Sp − Sq) mod p)

(Garner recombination).
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Towards Generic Countermeasures Against Fault Injection Attacks
The BellCoRe Attack

BellCoRe (Bell Communications Research) Definition

The BellCoRe attack consists in revealing the secret primes p and q by
faulting the computation. It is very powerful as it works even with very
random faulting.

I If Sp (resp. Sq) is faulted as Ŝp (resp. Ŝq), the attacker:
I gets an erroneous signature Ŝ ,
I can recover p (resp. q) as gcd(N , S − Ŝ).
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Towards Generic Countermeasures Against Fault Injection Attacks / The BellCoRe Attack
Why does it Work?

I For all integer x, gcd(N , x) can only take 4 values:
I 1, if N and x are co-prime,
I p, if x is a multiple of p,
I q, if x is a multiple of q,
I N , if x is a multiple of both p and q, i.e., of N .

I If Sp is faulted (i.e., replaced by Ŝp 6= Sp):
I S − Ŝ = q ·

(
(iq · (Sp − Sq) mod p)− (iq · (Ŝp − Sq) mod p)

)
⇒ gcd(N , S − Ŝ) = q

I If Sq is faulted (i.e., replaced by Ŝq 6= Sq):
I S − Ŝ ≡ (Sq − Ŝq)− (q mod p) · iq · (Sq − Ŝq) mod p
⇒ gcd(N , S − Ŝ) = p
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Towards Generic Countermeasures Against Fault Injection Attacks
Countermeasures

I Many countermeasures have been proposed:
I ∼20 papers,
I from 1999 to now,
I both from academia and industry.

I Including:
I Shamir (1999),
I Aumüller et al. (2002),
I Vigilant (2008) + Coron et al. (2010).
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Towards Generic Countermeasures Against Fault Injection Attacks
Formal Study of Countermeasures

I The goal is making sure countermeasures are trustworthy:
I by proving the algorithm at high-level

(the proof should apply to any refinement),
I by covering a very general attacker model.

vs
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Towards Generic Countermeasures Against Fault Injection Attacks / Formal Study of Countermeasures
Threat Model

Attacker model Definition

The attacker can request CRT-RSA computations, inject fault(s) during
the computation, and read the final result of the computation.

I Data fault (on intermediate values):
I zeroing or randomizing,
I permanent or transient.

I Code fault:
I skipping any number of consecutive instructions.

I Attack order:
I number of fault injections during the computation

(an attack is said high-order if its order is > 1).
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Towards Generic Countermeasures Against Fault Injection Attacks / Formal Study of Countermeasures
Data-Code Faulting Equivalence Lemma contribution

Equivalence between faults on the code and on the data Lemma

The effect of a skipping fault (i.e., fault on the code) can be captured by
considering only randomizing and zeroing faults (i.e., fault on the data).

proof sketch:

I If the skipped instructions are part of an arithmetic operation:
I either the computation has not been done at all: its result becomes

zero (if initialized) or random (if not),
I or the computation has partly been done: its result is thus considered

random at our modeling level.

I If the skipped instruction is a branching instruction, it is equivalent to
fault the result of the branching condition:

I at zero (i.e., false), to avoid branching,
I at random (i.e., true), to force branching.
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Towards Generic Countermeasures Against Fault Injection Attacks
finja

I Inputs:
I a high-level description of the algorithm,
I an attack success condition,
I a fault model.

I Output:
I the list of working attacks, or
I a proof that the computation is resistant to fault injections.

I http://pablo.rauzy.name/sensi/finja.html
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Towards Generic Countermeasures Against Fault Injection Attacks / finja
Overview

1. The algorithm is parsed into an internal representation (an AST):
I that finja can execute symbolically (simplified),
I that encodes properties of the intermediate variables.

2. finja makes a copy of the original tree and simplifies it.

3. For each possible fault(s) injection(s) in the fault model, finja:
I produces a copy of the original tree,
I injects the fault in the copy,
I simplifies the faulted tree,
I checks attack success condition holds,

if yes, the working attack is reported,
if not, the countermeasure is considered secure against this attack.

4. finja outputs an HTML report.
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Towards Generic Countermeasures Against Fault Injection Attacks / finja
Rewriting System

I Most of the Z ring axioms,
I ZN subrings,
I And a few theorems.
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Towards Generic Countermeasures Against Fault Injection Attacks / finja
Rewriting System

I Most of the Z ring axioms:
I neutral elements (0 for sums, 1 for products);
I absorbing element (0, for products);
I inverses and opposites;
I associativity and commutativity;
I but no distributivity (not confluent).

I ZN subrings,
I And a few theorems.

Pablo Rauzy (Telecom ParisTech) PhD Defense 2015-07-13 29 / 60



Towards Generic Countermeasures Against Fault Injection Attacks / finja
Rewriting System

I Most of the Z ring axioms,
I ZN subrings:

I identity:
I (a mod N ) mod N = a mod N ,
I N k mod N = 0;

I inverse:
I (a mod N ) × (a−1 mod N ) mod N = 1,
I (a mod N ) + (−a mod N ) mod N = 0;

I associativity and commutativity:
I (b mod N ) + (a mod N ) mod N = a + b mod N ,
I (a mod N ) × (b mod N ) mod N = a × b mod N ;

I subrings: (a mod N ×m) mod N = a mod N .
I And a few theorems.
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Towards Generic Countermeasures Against Fault Injection Attacks / finja
Rewriting System

I Most of the Z ring axioms,
I ZN subrings,
I And a few theorems:

I Fermat’s little theorem;
I its generalization, Euler’s theorem;
I Chinese remainder theorem;
I Binomial theorem in Zr2 rings

(1 + r)d ≡ 1 + dr mod r2.
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Towards Generic Countermeasures Against Fault Injection Attacks / finja
Minimal Example of Usage

minimal-example.fia

noprop a, b, c ;
t := a + b * c ;
return t ;

%%

@ !=[b] a

I Computation: t = a + b × c.
I Attack success condition: t 6≡ a mod b.

I finja -r minimal-example.fia

I finja -z minimal-example.fia

Pablo Rauzy (Telecom ParisTech) PhD Defense 2015-07-13 30 / 60

minimal-example.r.html
minimal-example.z.html


Towards Generic Countermeasures Against Fault Injection Attacks / finja
Minimal Example of Simplification

randomizing fault on c

noprop a, b, c ;
t := a + b * Random ;
return t ;

%%

@ !=[b] a

I @ !=[b] a
=> a + b * Random !=[b] a
=> a != a
=> false

I Harmless fault injection.

zeroing fault on a

noprop a, b, c ;
t := Zero + b * c ;
return t ;

%%

@ !=[b] a

I @ !=[b] a
=> Zero + b * c !=[b] a
=> b * c !=[b] a
=> 0 != a
=> true

I Attack successful.
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Towards Generic Countermeasures Against Fault Injection Attacks
Proven Countermeasure contribution

I Using finja, I have proved the security of:
I Aumüller et al. (2002) at PROOFS 2013 and
I Vigilant (2008) + Coron et al. (2010) at PPREW 2014.

I I have optimized:
I Aumüller: from 7 to 5 verifications,
I Vigilant: from 9 to 3 verifications, from 5 to 1 random number

(plus removed unnecessary computations).
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Towards Generic Countermeasures Against Fault Injection Attacks
High-Order Countermeasures?

I High-order attacks?
I High-order countermeasures?
I Proven high-order countermeasures?
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Towards Generic Countermeasures Against Fault Injection Attacks / High-Order Countermeasures?
High-Order Attacks

I High-order attacks have been studied and shown practical:
I Fault Attacks for CRT Based RSA:

New Attacks, New Results, and New Countermeasures,
by C. H. Kim and J.-J. Quisquater at WISTP’07.

I Multi Fault Laser Attacks on Protected CRT-RSA,
by E. Trichina and R. Korkikyan at FDTC’10.
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Towards Generic Countermeasures Against Fault Injection Attacks / High-Order Countermeasures?
Existing High-Order Countermeasures?

I A few countermeasures claim to be second-order:
I Practical fault countermeasures for chinese remaindering based RSA,

by M. Ciet and M. Joye at FDTC’05.
I On Second-Order Fault Analysis Resistance for CRT-RSA Implementations,

by E. Dottax, C. Giraud, M. Rivain, and Y. Sierra at WISTP’09.

I But they do not work in our more general fault model:
I finja -t -n 2 -z -z -s crt-rsa_ciet-joye.fia
I finja -t -n 2 -r -z -s crt-rsa_dottax-etal.fia

I We found no countermeasure claiming to resist > 2 faults.
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Towards Generic Countermeasures Against Fault Injection Attacks
Towards a Proven High-Order Countermeasure

I If we want a high-order countermeasure, we have to create it:
I What is a countermeasure?
I What makes a countermeasure work? What makes it fail?
I How do the existing first-order countermeasures work?
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Towards Generic Countermeasures Against Fault Injection Attacks
Countermeasures Classification

I What are the methods used by the existing countermeasures?

I We used 4 main parameters to classify countermeasures:
1. Shamir’s or Giraud’s family,
2. test-based or infective,
3. intended order,
4. usage of the small subrings.
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Towards Generic Countermeasures Against Fault Injection Attacks / Countermeasures Classification
Classification Recap contribution

Countermeasure Family Verification
method/count

Order
intended actual Small subrings usage

Shamir (1999) Shamir test / 1 1 0 r1 = r2, consistency of intermediate
signatures

Joye et al. (2001) Shamir test / 2 1 0 checksums of the intermediate CRT sig-
natures

Aumüller et al. (2002) Shamir test / 5 1 1 r1 = r2, consistency of the checksums
of both intermediate signatures

Blömer et al. (2003) Shamir infection / 2 1 1 direct verification of the intermediate
CRT signatures, CRT recombination
happens in overring

Ciet & Joye (2005) Shamir infection / 2 2 1 checksums of the intermediate CRT sig-
natures, CRT recombination happens in
overring

Giraud (2006) Giraud test / 1 1 1 NA

Boscher et al. (2007) Giraud test / 1 1 1 NA

Vigilant (2008) Shamir test / 7 1 1 r1 = r2, embedded control values,
CRT recombination happens in overring

Rivain (2009) Giraud test / 2 1 1 NA

Kim et al. (2011) Giraud infection / 6 1 1 NA
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Towards Generic Countermeasures Against Fault Injection Attacks
Building Better Countermeasures

I Formal study and classification of countermeasures:
I provided a better understanding of their working factors,
I allow to fix broken countermeasures, and build better ones.
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Towards Generic Countermeasures Against Fault Injection Attacks / Building Better Countermeasures
Correcting Shamir’s Countermeasure contribution

Algorithm: CRT-RSA with Shamir’s countermeasure

Input: Message M , key (p, q, d, iq) Output: Signature Md mod N , or error
1 Choose a small random integer r.

2 p′ = p · r
3 q′ = q · r

4 if p′ 6≡ 0 mod p or q′ 6≡ 0 mod q then return error

5 S′p = Md mod ϕ(p′) mod p′ // Intermediate signature in Zpr

6 S′q = Md mod ϕ(q′) mod q′ // Intermediate signature in Zqr
7 if S′p 6≡ S′q mod r then return error

8 Sp = S′p mod p // Retrieve intermediate signature in Zp
9 Sq = S′q mod q // Retrieve intermediate signature in Zq

10 S = Sq + q · (iq · (Sp − Sq) mod p) // Recombination in ZN

11 if S 6≡ S′p mod p or S 6≡ S′q mod q then return error

12 return S

Pablo Rauzy (Telecom ParisTech) PhD Defense 2015-07-13 40 / 60
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Towards Generic Countermeasures Against Fault Injection Attacks / Building Better Countermeasures
Simplifying Vigilant’s Countermeasure contribution

I Simplification of Vigilant’s countermeasure in 4 steps:
I our first simplifications + those of Coron et al.’s corrections,
I remove additional computation with random numbers,
I verify the 3 necessary invariants in a single step,
I bonus: transform the countermeasure into an infective variant.
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Algorithm: CRT-RSA with Vigilant’s countermeasure

Input: Message M , key (p, q, dp, dq , iq) Output: Signature Md mod N , or error
1 Choose a small random integer r, R1, R2, R3, R4. N = p · q
2 p′ = p · r2

3 ipr = p−1 mod r2

4 Mp = M mod p′

5 Bp = p · ipr ; Ap = 1− Bp mod p′

6 M′p = Ap ·Mp + Bp · (1 + r) mod p′ // CRT insertion of verification value in M′p
7 d′p = dp + R3 · (p− 1)

8 S′p = M′p
d′p mod ϕ(p′) mod p′ // Intermediate signature in Zpr2

9 if M′p 6≡ M mod p or d′p 6≡ dp mod p− 1 or Bp · S′p 6≡ Bp · (1 + d′p · r) mod p′ then return error
10 Spr = S′p − Bp · (1 + d′p · r − R1) // Verification value of S′p swapped with R1
11 q′ = q · r2

12 iqr = q−1 mod r2

13 Mq = M mod q′

14 Bq = q · iqr ; Aq = 1− Bq mod q′

15 M′q = Aq ·Mq + Bq · (1 + r) mod q′ // CRT insertion of verification value in M′q
16 d′q = dq + R4 · (q − 1)

17 S′q = M′q
d′q mod ϕ(q′) mod q′ // Intermediate signature in Zqr2

18 if M′q 6≡ M mod q or d′q 6≡ dq mod q − 1 or Bq · S′q 6≡ Bq · (1 + d′q · r) mod q′ then return error
19 Sqr = S′q − Bq · (1 + d′q · r − R2) // Verification value of S′q swapped with R2
20 if Mp 6≡ Mq mod r2 then return error
21 Sr = Sqr + q · (iq · (Spr − Sqr ) mod p′) // Recombination checksum in ZNr2

22 S′ = S′q + q · (iq · (S′p − S′q) mod p′) // Recombination in ZNr2

23 if N·(Sr − R2 − q · iq · (R1 − R2)) 6≡ 0 mod Nr2 then return error
24 if q · iq 6≡ 1 mod p then return error
25 return S = Sr mod N // Retrieve result in ZN
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Algorithm: CRT-RSA with Vigilant’s countermeasure

Input: Message M , key (p, q, dp, dq , iq) Output: Signature Md mod N , or error
1 Choose a small random integer r, R1, R2, R3, R4. N = p · q
2 p′ = p · r2

3 ipr = p−1 mod r2
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6 M′p = Ap ·Mp + Bp · (1 + r) mod p′ // CRT insertion of verification value in M′p
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15 M′q = Aq ·Mq + Bq · (1 + r) mod q′ // CRT insertion of verification value in M′q
16 d′q = dq + R4 · (q − 1)
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d′q mod ϕ(q′) mod q′ // Intermediate signature in Zqr2

18 if M′q 6≡ M mod q or d′q 6≡ dq mod q − 1 or Bq · S′q 6≡ Bq · (1 + d′q · r) mod q′ then return error
19 Sqr = S′q − Bq · (1 + d′q · r − R2) // Verification value of S′q swapped with R2

20 if Mp 6≡ Mq mod r2 then return error

21 Sr = Sqr + q · (iq · (Spr − Sqr ) mod p′) // Recombination checksum in ZNr2

22 S′ = S′q + q · (iq · (S′p − S′q) mod p′) // Recombination in ZNr2

23 if pq·(Sr − R2 − q · iq · (R1 − R2)) 6≡ 0 mod Nr2 then return error

24 if q · iq 6≡ 1 mod p then return error

25 return S = Sr mod N // Retrieve result in ZN
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Algorithm: CRT-RSA with Vigilant’s countermeasure

Input: Message M , key (p, q, dp, dq , iq) Output: Signature Md mod N , or error
1 Choose a small random integer r, R1, R2. N = p · q
2 p′ = p · r2

3 ipr = p−1 mod r2

4 Mp = M mod p′

5 Bp = p · ipr ; Ap = 1− Bp mod p′

6 M′p = Ap ·Mp + Bp · (1 + r) mod p′ // CRT insertion of verification value in M′p

7 d′p = dp + R3 · (p− 1)

8 S′p = M′p
dp mod ϕ(p′) mod p′ // Intermediate signature in Zpr2

9 if M′p 6≡ M mod p or Bp · S′p 6≡ Bp · (1 + dp · r) mod p′ then return error
10 Spr = S′p − Bp · (1 + dp · r − R1) // Verification value of S′p swapped with R1
11 q′ = q · r2

12 iqr = q−1 mod r2

13 Mq = M mod q′

14 Bq = q · iqr ; Aq = 1− Bq mod q′

15 M′q = Aq ·Mq + Bq · (1 + r) mod q′ // CRT insertion of verification value in M′q

16 d′q = dq + R4 · (q − 1)

17 S′q = M′q
dq mod ϕ(q′) mod q′ // Intermediate signature in Zqr2

18 if M′q 6≡ M mod q or Bq · S′q 6≡ Bq · (1 + dq · r) mod q′ then return error
19 Sqr = S′q − Bq · (1 + dq · r − R2) // Verification value of S′q swapped with R2

20 if Mp 6≡ Mq mod r2 then return error

21 Sr = Sqr + q · (iq · (Spr − Sqr ) mod p′) // Recombination checksum in ZNr2

22 S′ = S′q + q · (iq · (S′p − S′q) mod p′) // Recombination in ZNr2

23 if pq·(Sr − R2 − q · iq · (R1 − R2)) 6≡ 0 mod Nr2 then return error

24 if q · iq 6≡ 1 mod p then return error

25 return S = Sr mod N // Retrieve result in ZN
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Algorithm: CRT-RSA with Vigilant’s countermeasure

Input: Message M , key (p, q, dp, dq , iq) Output: Signature Md mod N , or error
1 Choose a small random integer r. N = p · q
2 p′ = p · r2

3 ipr = p−1 mod r2

4 Mp = M mod p′

5 Bp = p · ipr ; Ap = 1− Bp mod p′

6 M′p = Ap ·Mp + Bp · (1 + r) mod p′ // CRT insertion of verification value in M′p

7 d′p = dp + R3 · (p− 1)

8 S′p = M′p
dp mod ϕ(p′) mod p′ // Intermediate signature in Zpr2

9 if M′p + N 6≡ M mod p then return error
10 Spr = 1 + dp · r // Checksum in Zr2 for S′p
11 q′ = q · r2

12 iqr = q−1 mod r2

13 Mq = M mod q′

14 Bq = q · iqr ; Aq = 1− Bq mod q′

15 M′q = Aq ·Mq + Bq · (1 + r) mod q′ // CRT insertion of verification value in M′q

16 d′q = dq + R4 · (q − 1)

17 S′q = M′q
dq mod ϕ(q′) mod q′ // Intermediate signature in Zqr2

18 if M′q + N 6≡ M mod q then return error
19 Sqr = 1 + dq · r // Checksum in Zr2 for S′q

20 if Mp 6≡ Mq mod r2 then return error

21 Sr = Sqr + q · (iq · (Spr − Sqr ) mod p′) // Recombination checksum in Zr2
22 S′ = S′q + q · (iq · (S′p − S′q) mod p′) // Recombination in ZNr2
23 if S′ 6≡ Sr mod r2 then return error

24 if q · iq 6≡ 1 mod p then return error

25 return S = S′ mod N // Retrieve result in ZN
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Algorithm: CRT-RSA with Vigilant’s countermeasure

Input: Message M , key (p, q, dp, dq , iq) Output: Signature Md mod N , or a random value in ZN
1 Choose a small random integer r. N = p · q
2 p′ = p · r2

3 ipr = p−1 mod r2

4 Mp = M mod p′

5 Bp = p · ipr ; Ap = 1− Bp mod p′

6 M′p = Ap ·Mp + Bp · (1 + r) mod p′ // CRT insertion of verification value in M′p

7 d′p = dp + R3 · (p− 1)

8 S′p = M′p
dp mod ϕ(p′) mod p′ // Intermediate signature in Zpr2

9 cp = M′p + N −M + 1 mod p
10 Spr = 1 + dp · r // Checksum in Zr2 for S′p
11 q′ = q · r2

12 iqr = q−1 mod r2

13 Mq = M mod q′

14 Bq = q · iqr ; Aq = 1− Bq mod q′

15 M′q = Aq ·Mq + Bq · (1 + r) mod q′ // CRT insertion of verification value in M′q

16 d′q = dq + R4 · (q − 1)

17 S′q = M′q
dq mod ϕ(q′) mod q′ // Intermediate signature in Zqr2

18 cq = M′q + N −M + 1 mod q
19 Sqr = 1 + dq · r // Checksum in Zr2 for S′q

20 if Mp 6≡ Mq mod r2 then return error

21 Sr = Sqr + q · (iq · (Spr − Sqr ) mod p′) // Recombination checksum in Zr2
22 S′ = S′q + q · (iq · (S′p − S′q) mod p′) // Recombination in ZNr2
23 cS = S′ − Sr + 1 mod r2

24 if q · iq 6≡ 1 mod p then return error

25 return S = S′cpcq cS mod N // Retrieve result in ZN
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Towards Generic Countermeasures Against Fault Injection Attacks / Building Better Countermeasures
High-Order Countermeasures contribution

High-Order Countermeasures Proposition

Against randomizing faults, all first-order correct countermeasures are
high-order.

However, there are no generic high-order countermeasures if the three
types of faults in our attack model are taken into account, but it is
possible to build Dth-order countermeasures for any D.

proof sketch:

I Random faults cannot induce a verification skip
(whether test-based or infective).

I Repeating verifications D times can force to inject D + 1 faults.
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Towards Generic Countermeasures Against Fault Injection Attacks / Building Better Countermeasures
Generating High-Order Countermeasures contribution

Algorithm: Generation of CRT-RSA with Vigilant’s countermeasure at order D

Input: order D Output: CRT-RSA algorithm protected against fault injection attack of order D
1 print Choose a small random integer r.
2 print N = p · q
3 print p′ = p · r2 ; ipr = p−1 mod r2 ; Mp = M mod p′ ; Bp = p · ipr ; Ap = 1− Bp mod p′

4 print M′p = Ap ·Mp + Bp · (1 + r) mod p′

5 print q′ = q · r2 ; iqr = q−1 mod r2 ; Mq = M mod q′ ; Bq = q · iqr ; Aq = 1− Bq mod q′

6 print M′q = Aq ·Mq + Bq · (1 + r) mod q′

7 print S′p = M′p
dp mod ϕ(p′) mod p′

8 print S′q = M′q
dq mod ϕ(q′) mod q′

9 print Spr = 1 + dp · r
10 print Sqr = 1 + dq · r
11 print Sr = Sqr + q · (iq · (Spr − Sqr ) mod p′)
12 print S′ = S′q + q · (iq · (S′p − S′q) mod p′)
13 print S0 = S′ mod N
14 for i ← 1 to D do
15 print if M′p + N 6≡ M mod p then return error
16 print S′; print i print = S; print i−1
17 print if M′q + N 6≡ M mod q then return error
18 print S′′; print i print = S′; print i
19 print if S 6≡ Sr mod r2 then return error
20 print S; print i print = S′′; print i
21 end
22 print return S; print D
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Towards Generic Countermeasures Against Fault Injection Attacks / Building Better Countermeasures
Example of countermeasure of order 3

Algorithm: CRT-RSA with Vigilant’s countermeasure at order 3

Input: Message M , key (p, q, dp, dq , iq) Output: Signature Md mod N , or error
1 Choose a small random integer r.
2 N = p · q
3 p′ = p · r2 ; ipr = p−1 mod r2 ; Mp = M mod p′ ; Bp = p · ipr ; Ap = 1− Bp mod p′

4 M′p = Ap ·Mp + Bp · (1 + r) mod p′

5 q′ = q · r2 ; iqr = q−1 mod r2 ; Mq = M mod q′ ; Bq = q · iqr ; Aq = 1− Bq mod q′

6 M′q = Aq ·Mq + Bq · (1 + r) mod q′

7 S′p = M′p
dp mod ϕ(p′) mod p′ ; Spr = 1 + dp · r

8 S′q = M′q
dq mod ϕ(q′) mod q′ ; Sqr = 1 + dq · r

9 Sr = Sqr + q · (iq · (Spr − Sqr ) mod p′)
10 S′ = S′q + q · (iq · (S′p − S′q) mod p′)
11 S0 = S′ mod N

12 if M′p + N 6≡ M mod p then return error else S′1 = S0
13 if M′q + N 6≡ M mod q then return error else S′′1 = S′1
14 if S 6≡ Sr mod r2 then return error else S1 = S′′1
15 if M′p + N 6≡ M mod p then return error else S′2 = S1
16 if M′q + N 6≡ M mod q then return error else S′′2 = S′2
17 if S 6≡ Sr mod r2 then return error else S2 = S′′2
18 if M′p + N 6≡ M mod p then return error else S′3 = S2
19 if M′q + N 6≡ M mod q then return error else S′′3 = S′3
20 if S 6≡ Sr mod r2 then return error else S3 = S′′3
21 return S3
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Towards Generic Countermeasures Against Fault Injection Attacks
Generalization

I The working factors of countermeasures:
I are not tied to the BellCoRe attack,
I nor to the CRT-RSA algorithm.

I Cost-effective integrity verification of any arithmetic computation.
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Towards Generic Countermeasures Against Fault Injection Attacks / Generalization
Integrity Verification

I Obvious idea: repeat the computation and compare the results:
I may be easy to inject the same fault twice,
I costs too much.

I Signature verification is an RSA-specific possibility:
I but it requires to have both parts of the key,
I may cost too much.

I Existing countermeasures are optimizations of the redundancy idea.
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Towards Generic Countermeasures Against Fault Injection Attacks
Entanglement

I Use the isomorphism between Fp × Fr and Zpr .

Fr

Fr

= error

output Fp

false

tr
ue

Fp

Zpr

Fp

Pablo Rauzy (Telecom ParisTech) PhD Defense 2015-07-13 48 / 60

Notation: Zn is a shorthand for Z/nZ.



Towards Generic Countermeasures Against Fault Injection Attacks / Entanglement
Inversion in Direct Products contribution

Divisions optimization Proposition

To get the inverse of z in Fp while computing in Zpr , one has:
I z = 0 mod r =⇒ (zp−2 mod pr) ≡ z−1 mod p,
I otherwise (z−1 mod pr) ≡ z−1 mod p.

proof sketch:

I If z = 0 mod r , then z is not invertible in Zpr :
I but zp−2 exists in Zpr ,
I and (zp−2 mod pr) mod p = zp−2 mod p = z−1 mod p.
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Towards Generic Countermeasures Against Fault Injection Attacks
enredo

I Inputs:
I an asymmetric cryptography algorithm to be protected,
I a desired redundancy level.

I Output:
I the (proved to be the) same algorithm
I provably protected against fault injection attacks.

I http://pablo.rauzy.name/sensi/enredo.html
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Towards Generic Countermeasures Against Fault Injection Attacks / enredo
Overview

1. The algorithm is parsed and type-checked:
I type-checker gather necessary information for the transformation.

2. enredo applies the entanglement transformation:
I the transformation has been formally defined,
I and it is proved correct (semantic preserving).

3. enredo outputs the protected algorithm.

Pablo Rauzy (Telecom ParisTech) PhD Defense 2015-07-13 51 / 60



Towards Generic Countermeasures Against Fault Injection Attacks / enredo
Correctness of the Transformation contribution

Correctness Proposition

The transformation is correct if at all time during the execution the
invariant defining the transformation of the memory holds, and when a
value is returned, it is the same as in the original program.
The enredo transformation is correct.

proof sketch:

m m′

〈m〉r 〈m′〉r

JsKΓ

〈.〉r 〈.〉r

J〈s〉r,ΓK〈Γ〉r

during the execution, or

m v

〈m〉r v′

JsKΓ

〈.〉r

J〈s〉r,ΓK〈Γ〉r

when the algorithm terminates.
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Towards Generic Countermeasures Against Fault Injection Attacks / enredo
Generic Security Proof contribution

Security Proposition

The algorithm is secure if when it returns a value it is either the right one
or an error constant. It is not secure only with a probability asymptotically
inversely proportional to the security parameter r .

proof sketch:

I Faulted results are polynomials of corrupted intermediate values:
I the result can be expressed as a polynomial of the inputs and the faults,
I a fault on x is not detected if:

P(x̂) = P(x) mod r and P(x̂) 6= P(x) mod p,
I i.e., when x̂1 is a root of ∆P(x̂1) = P(x̂1)− P(x1) in Zr .

I Non-detection probability Pn.d. is inversely proportional to r :
I Pn.d. ≈ #roots(∆P)/r in Zr ,
I If ∆P is uniformly distributed, when r →∞, #roots(∆P) tends to 1,
I in practice Pn.d. & 1

r , i.e., Pn.d. ≥ 1
r but is close to 1

r .
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Towards Generic Countermeasures Against Fault Injection Attacks
Practical Case Study with ECSM on 32-bit ARMv7

Field characteristic p = 0xfffffffffffffffffffffffffffffffeffffffffffffffff

Curve equation a = 0xfffffffffffffffffffffffffffffffefffffffffffffffc
coefficients b = 0x64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1

Point coordinates Gx = 0x188da80eb03090f67cbf20eb43a18800f4ff0afd82ff1012
Gy = 0x07192b95ffc8da78631011ed6b24cdd573f977a11e794811

Point order ord = 0xffffffffffffffffffffffff99def836146bc9b1b4d22831

Parameters of our ECSM implementation (namely NIST P-192)
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Towards Generic Countermeasures Against Fault Injection Attacks / Practical Case Study with ECSM on 32-bit ARMv7
Security Results

r value
r size Positives (%) Negatives (%)
(bit) true false true false

1 1 0.00 0.00 2.74 97.26
251 8 63.65 0.00 2.56 33.79
1021 10 89.09 0.00 2.96 7.95
2039 11 98.82 0.00 0.00 1.18
4093 12 97.61 0.00 1.91 0.48
65521 16 97.79 0.00 2.21 0.00

4294967291 32 97.19 0.00 2.81 0.00
18446744073709551557 64 99.79 0.00 0.21 0.00

≈ 1000 tests for each value of r
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Towards Generic Countermeasures Against Fault Injection Attacks / Practical Case Study with ECSM on 32-bit ARMv7
Performance Results

r value
r size time (ms)

overhead(bit) Zpr Fr test

1 1 683 24 �1 ×1.04
251 8 883 91 �1 ×1.43
1021 10 899 100 �1 ×1.46
2039 11 902 197 �1 ×1.61
4093 12 903 197 �1 ×1.61
65521 16 883 189 �1 ×1.56

4294967291 32 832 172 �1 ×1.47
18446744073709551557 64 996 246 �1 ×1.82

Signature verification overhead ≈ ×4.5.

Code C + mini-gmp compiled with gcc -O0 (no optimization).
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Conclusions

I CRT-RSA implementations can provably resist the BellCoRe attack.

I CRT-RSA implementations can provably resist multiple faults.

I CRT-RSA implementations can provably resist new fault attacks.

I Any asymmetric cryptography implementations can be protected.
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Dissemination

I Articles in conferences with proceedings:
I PPREW 2014, FDTC 2014, HOST 2015.

I Articles in journals
I Journal of Cryptographic Engineering (×2).

I Communications in workshops without proceedings:
I COSADE 2013 (short paper + talk),
I PROOFS 2013 and 2014 (full papers + talks),
I CHES 2013 and 2015 (posters),
I TRUDEVICE 2015 (short paper + talk),
I talks: DigiCosme working group, GDR SoC-SiP Security Day, Formal

Methods and Security seminar Inria/DGA, Crypto’Spain Itinerant
Seminar, SAS deptartment seminar @ EMSE, . . .

I Two articles under submission and one book chapter in progress.
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Perspectives

I Direct follow-up.

I Formalize security beyond cryptology.
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The End

Questions?
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Classification of CRT-RSA Countermeasures in Shamir’s Family
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Classification of CRT-RSA Countermeasures in Shamir’s Family
1. Shamir’s or Giraud’s Family of Countermeasures

I Two main families of countermeasures:
I descendants of Giraud’s countermeasure (2006),
I descendants of Shamir’s countermeasure (1999).
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Classification of CRT-RSA Countermeasures in Shamir’s Family
1.1. Giraud’s Family

I Use particular exponentiation algorithms that:
I keep track of variables involved in intermediate steps,
I check an invariant that is supposed to be spread till the last steps.

I Examples of countermeasures in this family include:
I Boscher et al. (2007),
I Rivain (2009) (and its recently improved version from 2014),
I Kim et al. (2011).

I Study of Giraud’s family countermeasures was left as future work:
I Ágnes Kiss did it with Juliane Krämer at TU Berlin,
I we co-authored a paper (to be published).
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Classification of CRT-RSA Countermeasures in Shamir’s Family
1.2. Shamir’s Family

I Use a “checksum” in a smaller mathematical structure:
I RSA computes in rings Za (typically, a = p, a = q, or a = pq),
I any small number b is coprime with a,
I there is an isomorphism between the direct product Zab and Za × Zb,
I original computation and checksum can be conducted together in Zab,
I redundant checksum can be computed in parallel in Zb.

I Verify that invariants on the computations and the checksums hold.

Zb

Zb

= error

output Za

false

tr
ue

Za

Zab

Za
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Classification of CRT-RSA Countermeasures in Shamir’s Family
2. Test-Based or Infective Countermeasures

I Invariant verification can be done in two ways:
I step-wise internal checks during the CRT computation,
I computationally, using an infective computation strategy.
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Classification of CRT-RSA Countermeasures in Shamir’s Family
2.1. Test-Based Countermeasures

Test-based countermeasure Definition

A countermeasure is said to be test-based if it attempts to detect fault
injections by verifying that some arithmetic invariants are respected, and
branch to return an error instead of the numerical result of the algorithm
in case of invariant violation.

I Examples of test-based countermeasures:
I Shamir (1999),
I Joye et al. (2001),
I Aumüller et al. (2002),
I Vigilant (2008).
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Classification of CRT-RSA Countermeasures in Shamir’s Family
2.2. Infective Countermeasures

Infective countermeasure Definition

A countermeasure is said to be infective if rather than testing arithmetic
invariants it uses them to compute a neutral element of some arithmetic
operation in a way that would not result in this neutral element if the
invariant is violated.
It then uses the results of these computations to infect the result of the
algorithm before returning it to make it unusable by the attacker (thus, it
does not need branching instructions).

I Examples of infective countermeasures:
I Blömer et al. (2003),
I Ciet & Joye (2005),
I Kim et al. (2011).
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Classification of CRT-RSA Countermeasures in Shamir’s Family
2.3. Infection-Test Equivalence Property

Equivalence between test-based and infective verification Proposition

Each test-based (resp. infective) countermeasure has a direct equivalent
infective (resp. test-based) countermeasure.

proof sketch:

I Invariants verified by countermeasures are modular equality:
I a ?≡ b mod m.
I Test-based: if a != b [mod m] then return error.
I Infective: c := a - b + 1 mod m; ... return Sc.
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Classification of CRT-RSA Countermeasures in Shamir’s Family
3. Intended Order

I In our fault model, all existing countermeasures:
I resist any number of randomizing faults,
I can be broken by a second-order attack:

a well targeted fault injection, and
a verification skip (e.g., using a skipping or a zeroing fault).

I The concept of integrity verification does not depend on the order.
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Classification of CRT-RSA Countermeasures in Shamir’s Family
4. Usage of the Small Subrings

I In most countermeasures:
I computations in Zp and Zq are lifted in Zpr1 and Zqr2 ,
I allowing the retrieval of the results modulo p and q, and
I the verification of the signature modulo r1 and r2.

I The following questions were raised:
I Are the smaller rings used to verify the intermediate signatures?
I Or are they used directly to compute checksums that are verified?
I Does CRT recombination takes place in an overring?
I When r1 = r2, what is permitted by the resulting symmetry?
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Polynomials of Faults
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Polynomials of Faults
#roots probability for ECSM [k]G.
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Polynomials of Faults
Degree of the polynomial ∆P against the value of k (in log-log scale)

Pablo Rauzy (Telecom ParisTech) PhD Defense 2015-07-13 74 / 60



Formally Proved Security of Assembly Code Against Power Analysis
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Formally Proved Security of Assembly Code Against Power Analysis
Dual-rail with Precharge Logic

I The DPL countermeasure consists in computing on a redundant
representation: each bit y is implemented as a pair (yFalse, yTrue).

I The bit pair is then used in a protocol made up of two phases:
1. a precharge phase, during which all the bit pairs are zeroized

(yFalse, yTrue) = (0, 0), such that the computation starts from a known
reference state;

2. an evaluation phase, during which the (yFalse, yTrue) pair is equal to
(1, 0) if it carries the logical value 0, or (0, 1) if it carries the logical
value 1.
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Formally Proved Security of Assembly Code Against Power Analysis
DPL Macro

I Each sensitive instruction should replaced by a DPL macro.
I The DPL macro assumes that the system is in a valid DPL state.
I And leaves it in a valid DPL state to make the macros chainable.

I The basic idea is to concatenate two DPL encoded values.
I Then use the result as an index in a look-up table.
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Formally Proved Security of Assembly Code Against Power Analysis / DPL Macro
Example Using the Two Least Significant Bit

I In this example we use the two LSB.
I Logical value 1 is 1 (01).
I Logical value 0 is 2 (10).

I Precharge phases (activity: 1 if sensitive)

I Evaluation phases (activity: 1)

I Masks (activity: normally 0)

I Shifts (activity: 2)

I Concatenation (activity: 1)

I Look-up (activity: 1 + 2)

r1 ← r0
r1 ← a
r1 ← r1 ∧ 3
r1 ← r1 � 1
r1 ← r1 � 1
r2 ← r0
r2 ← b
r2 ← r2 ∧ 3
r1 ← r1 ∨ r2
r3 ← r0
r3 ← op[r1]
d ← r0
d ← r3

DPL macro for
d = a op b
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Formally Proved Security of Assembly Code Against Power Analysis
Code Transformation

1. Bitslice code.
2. DPL macros expansion.
3. Look-up tables.

Pablo Rauzy (Telecom ParisTech) PhD Defense 2015-07-13 79 / 60



Formally Proved Security of Assembly Code Against Power Analysis / Code Transformation
1. Bitslicing Code

I Always possible (by Turing machines equivalence theorem)
I But, hard to do automatically in practice.
I However, there are a lot of already (manually) bitsliced

implementations, since it is a common optimization technique.

→ We take already bitsliced code as input.
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Formally Proved Security of Assembly Code Against Power Analysis / Code Transformation
2.1. Sensitive Instructions

Sensitive value Definition

A value is said sensitive if it depends on sensitive data. A sensitive data
depends on the secret key or the plaintext.

Sensitive instruction Definition

An instruction is said sensitive if it may modify the Hamming weight of a
sensitive value.

I All the sensitive instructions must be expanded to a DPL macro.
I Thus, all the sensitive data must be transformed too.
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Formally Proved Security of Assembly Code Against Power Analysis / Code Transformation
2.2. Which Instructions are Sensitive?

I Bitsliced code means that only the logical (bit level) operators, except
shifts, are used in sensitive instructions.

I DPL protocol implies that not instructions are replaced by xor.

→ Only and, or, and xor instructions need to be expanded to DPL
macros.
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Formally Proved Security of Assembly Code Against Power Analysis / Code Transformation
3. Look-Up Tables

I Addresses of the look-up tables are sensitive too: their indices are
sensitive values.

I Thus, the addresses bits corresponding to the accessed cell must be 0.
I In our example, the look-up table addresses must be multiple of 16.

index 0000, 0001, 0010, 0011, 0100, 0101 , 0110 , 0111

and 00 , 00 , 00 , 00 , 00 , 01 , 10 , 00

or 00 , 00 , 00 , 00 , 00 , 01 , 01 , 00

xor 00 , 00 , 00 , 00 , 00 , 10 , 01 , 00

index 1000, 1001 , 1010 , 1011, 1100, 1101, 1110, 1111

and 00 , 10 , 10 , 00 , 00 , 00 , 00 , 00

or 00 , 01 , 10 , 00 , 00 , 00 , 00 , 00

xor 00 , 01 , 10 , 00 , 00 , 00 , 00 , 00
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or 00 , 00 , 00 , 00 , 00 , 01 , 01 , 00

xor 00 , 00 , 00 , 00 , 00 , 10 , 01 , 00

index 1000, 1001 , 1010 , 1011, 1100, 1101, 1110, 1111

and 00 , 10 , 10 , 00 , 00 , 00 , 00 , 00
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xor 00 , 01 , 10 , 00 , 00 , 00 , 00 , 00
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Formally Proved Security of Assembly Code Against Power Analysis / Code Transformation
Correctness Proof of the Transformation

Correct DPL transformation Definition

Let S be a valid state of the system (values in registers and memory).
Let c be a sequence of instructions of the system.
Let Ŝ be the state of the system after the execution of c with state S , we
denote that by S c−→ Ŝ .
We write dpl(S) for the DPL state equivalent to the state S .
We say that c′ is a correct DPL transformation of the code c if
S c−→ Ŝ =⇒ dpl(S) c′−→ dpl(Ŝ).

Correctness of our code transformation Proposition

The expansion of the sensitive instructions into DPL macros is a correct
DPL transformation.

I Proof in the paper.
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Formally Proved Security of Assembly Code Against Power Analysis
Formally Proving the Absence of Leakage

I Example execution for and.

a, b 10, 10 Sensitive
activityd r1 r2 r3

mov r1 r0 ? 0 ? ? 0
mov r1 a ? 10 ? ? 1
and r1 r1 #3 ? 10 ? ? 0
shl r1 r1 #1 ? 100 ? ? 2
shl r1 r1 #1 ? 1000 ? ? 2
mov r2 r0 ? 1000 0 ? 0
mov r2 b ? 1000 10 ? 1
and r2 r2 #3 ? 1000 10 ? 0
orr r1 r1 r2 ? 1010 10 ? 1
mov r3 r0 ? 1010 10 0 0
mov r3 !r1,and ? 1010 10 10 3
mov d r0 0 1010 10 10 0
mov d r3 10 1010 10 10 1
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Formally Proved Security of Assembly Code Against Power Analysis
Formally Proving the Absence of Leakage

I Example execution for and.

a, b 10, 01 Sensitive
activityd r1 r2 r3

mov r1 r0 ? 0 ? ? 0
mov r1 a ? 10 ? ? 1
and r1 r1 #3 ? 10 ? ? 0
shl r1 r1 #1 ? 100 ? ? 2
shl r1 r1 #1 ? 1000 ? ? 2
mov r2 r0 ? 1000 0 ? 0
mov r2 b ? 1000 01 ? 1
and r2 r2 #3 ? 1000 01 ? 0
orr r1 r1 r2 ? 1001 01 ? 1
mov r3 r0 ? 1001 01 0 0
mov r3 !r1,and ? 1001 01 10 3
mov d r0 0 1001 01 10 0
mov d r3 10 1001 01 10 1
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Formally Proved Security of Assembly Code Against Power Analysis
Formally Proving the Absence of Leakage

I Example execution for and.

a, b 01, 10 Sensitive
activityd r1 r2 r3

mov r1 r0 ? 0 ? ? 0
mov r1 a ? 01 ? ? 1
and r1 r1 #3 ? 01 ? ? 0
shl r1 r1 #1 ? 010 ? ? 2
shl r1 r1 #1 ? 0100 ? ? 2
mov r2 r0 ? 0100 0 ? 0
mov r2 b ? 0100 10 ? 1
and r2 r2 #3 ? 0100 10 ? 0
orr r1 r1 r2 ? 0110 10 ? 1
mov r3 r0 ? 0110 10 0 0
mov r3 !r1,and ? 0110 10 10 3
mov d r0 0 0110 10 10 0
mov d r3 10 0110 10 10 1
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Formally Proved Security of Assembly Code Against Power Analysis
Formally Proving the Absence of Leakage

I Example execution for and.

a, b 01, 01 Sensitive
activityd r1 r2 r3

mov r1 r0 ? 0 ? ? 0
mov r1 a ? 01 ? ? 1
and r1 r1 #3 ? 01 ? ? 0
shl r1 r1 #1 ? 010 ? ? 2
shl r1 r1 #1 ? 0100 ? ? 2
mov r2 r0 ? 0100 0 ? 0
mov r2 b ? 0100 01 ? 1
and r2 r2 #3 ? 0100 01 ? 0
orr r1 r1 r2 ? 0101 01 ? 1
mov r3 r0 ? 0101 01 0 0
mov r3 !r1,and ? 0101 01 01 3
mov d r0 0 0101 01 01 0
mov d r3 01 0101 01 01 1
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Formally Proved Security of Assembly Code Against Power Analysis / Formally Proving the Absence of Leakage
Computed Proof of Constant Activity

I Our tool does this verification automatically for the whole program.
I It uses symbolic computations to keep track of possible leakages.

I The strategy is to simulate a CPU and memory in software, and
compute with sets of values.

I Initially, all sensitive data values can be either 0 or 1.
I At each cycle and for each possible combination of actual values:

I it looks at the Hamming weight of values and Hamming distance of
updates in registers, memory, and addresses; and

I if one can have different values, it reports a leak.

I This verification is independent from the code transformation.
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Formally Proved Security of Assembly Code Against Power Analysis
Cost of the Countermeasure

bitslice DPL cost

code (B) 1620 3056 ×1.88
RAM (B) 288 352 +64
#cycles 78, 403 235, 427 ×3

DPL cost.
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Formally Proved Security of Assembly Code Against Power Analysis
Attacks

I We attacked three implementations:
I a bitsliced but unprotected one,
I a DPL protected one using the two less significant bits,
I a DPL protected one taking the hardware characterization into account.

I We took 100, 000 execution traces.
I We computed the success rate of using monobit CPA of the output

of the S-Box as a model.
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Formally Proved Security of Assembly Code Against Power Analysis / Attacks
Results

I The unprotected implementation breaks using about 400 traces.
I The poorly balanced one is still not broken using 100, 000 traces.
→ But we want to show that the hardware characterization is beneficial!

I Let’s make the attacker “cheat”.
I We used our knowledge of the key to select a narrow part of the

traces where we knew that the attack would work.
I We used the NICV to select the point where the signal-to-noise ratio

of the CPA attack is the highest.
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Formally Proved Security of Assembly Code Against Power Analysis / Attacks
Results for the “Cheating Attacker”

I The unprotected implementation breaks using 138 traces.
I The poorly balanced one breaks using 1, 470 traces.
I The better balanced one breaks using 4, 810 traces.
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Formally Proved Security of Assembly Code Against Power Analysis / Attacks
Results for the “Cheating Attacker”: unprotected
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Formally Proved Security of Assembly Code Against Power Analysis / Attacks
Results for the “Cheating Attacker”: poorly balanced

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Bitslice DPL, poorly balanced

Traces count

Su
cc

es
s 

ra
te

80% Success rate : 1470 traces (optimistic) 

0 5 10 15 20 25 30 35 40

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

CPA for all 16 guesses (correct one in black), after 9000 traces

Time (# of samples (x1000))
C

or
re

la
tio

n

Monobit CPA attack on poorly balanced DPL implementation (bits 0 and 1).

Pablo Rauzy (Telecom ParisTech) PhD Defense 2015-07-13 92 / 60



Formally Proved Security of Assembly Code Against Power Analysis / Attacks
Results for the “Cheating Attacker”: better balanced
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