
Programming as Theory Building

Peter Naur

1985

Peter Naur’s classic 1985 essay “Programming as Theory Building” argues that a program
is not its source code. A program is a shared mental construct (he uses the word theory)
that lives in the minds of the people who work on it. If you lose the people, you lose the
program. The code is merely a written representation of the program, and it’s lossy, so you
can’t reconstruct a program from its code.

Introduction

The present discussion is a contribution to the under-
standing of what programming is. It suggests that pro-
gramming properly should be regarded as an activity by
which the programmers form or achieve a certain kind of
insight, a theory, of the matters at hand. This sugges-
tion is in contrast to what appears to be a more common
notion, that programming should be regarded as a pro-
duction of a program and certain other texts.

Some of the background of the views presented here is
to be found in certain observations of what actually hap-
pens to programs and the teams of programmers dealing
with them, particularly in situations arising from unex-
pected and perhaps erroneous program executions or re-
actions, and on the occasion of modifications of programs.
The difficulty of accommodating such observations in a
production view of programming suggests that this view
is misleading. The theory building view is presented as
an alternative.

A more general background of the presentation is a
conviction that it is important to have an appropriate un-
derstanding of what programming is. If our understand-
ing is inappropriate we will misunderstand the difficulties
that arise in the activity and our attempts to overcome
them will give rise to conflicts and frustrations.

In the present discussion some of the crucial back-
ground experience will first be outlined. This is followed
by an explanation of a theory of what programming is,
denoted the Theory Building View. The subsequent sec-
tions enter into some of the consequences of the Theory
Building View.

Programming and the Programmers’ Knowledge

I shall use the word programming to denote the whole ac-
tivity of design and implementation of programmed so-
lutions. What I am concerned with is the activity of
matching some significant part and aspect of an activity
in the real world to the formal symbol manipulation that
can be done by a program running on a computer. With
such a notion it follows directly that the programming
activity I am talking about must include the develop-
ment in time corresponding to the changes taking place

in the real world activity being matched by the program
execution, in other words program modifications.

One way of stating the main point I want to make
is that programming in this sense primarily must be the
programmers’ building up knowledge of a certain kind,
knowledge taken to be basically the programmers’ imme-
diate possession, any documentation being an auxiliary,
secondary product.

As a background of the further elaboration of this
view given in the following sections, the remainder of the
present section will describe some real experience of deal-
ing with large programs that has seemed to me more and
more significant as I have pondered over the problems.
In either case the experience is my own or has been com-
municated to me by persons having first hand contact
with the activity in question.

Case 1 concerns a compiler. It has been developed
by a group A for a Language L and worked very well on
computer X. Now another group B has the task to write
a compiler for a language L + M , a modest extension of
L, for computer Y . Group B decides that the compiler
for L developed by group A will be a good starting point
for their design, and get a contract with group A that
they will get support in the form of full documentation,
including annotated program texts and much additional
written design discussion, and also personal advice. The
arrangement was effective and group B managed to de-
velop the compiler they wanted. In the present context
the significant issue is the importance of the personal ad-
vice from group A in the matters that concerned how to
implement the extensions M to the language. During the
design phase group B made suggestions for the manner
in which the extensions should be accommodated and
submitted them to group A for review. In several major
cases it turned out that the solutions suggested by group
B were found by group A to make no use of the facili-
ties that were not only inherent in the structure of the
existing compiler but were discussed at length in its doc-
umentation, and to be based instead on additions to that
structure in the form of patches that effectively destroyed
its power and simplicity. The members of group A were
able to spot these cases instantly and could propose sim-
ple and effective solutions, framed entirely within the ex-

1



isting structure. This is an example of how the full pro-
gram text and additional documentation is insufficient
in conveying to even the highly motivated group B the
deeper insight into the design, that theory which is im-
mediately present to the members of group A.

In the years following these events the compiler devel-
oped by group B was taken over by other programmers
of the same organization, without guidance from group
A. Information obtained by a member of group A about
the compiler resulting from the further modification of it
after about 10 years made it clear that at that later stage
the original powerful structure was still visible, but made
entirely ineffective by amorphous additions of many dif-
ferent kinds. Thus, again, the program text and its doc-
umentation has proved insufficient as a carrier of some of
the most important design ideas.

Case 2 concerns the installation and fault diagnosis of
a large real–time system for monitoring industrial pro-
duction activities. The system is marketed by its pro-
ducer, each delivery of the system being adapted indi-
vidually to its specific environment of sensors and dis-
play devices. The size of the program delivered in each
installation is of the order of 200,000 lines. The relevant
experience from the way this kind of system is handled
concerns the role and manner of work of the group of in-
stallation and fault finding programmers. The facts are,
first that these programmers have been closely concerned
with the system as a full time occupation over a period
of several years, from the time the system was under
design. Second, when diagnosing a fault these program-
mers rely almost exclusively on their ready knowledge of
the system and the annotated program text, and are un-
able to conceive of any kind of additional documentation
that would be useful to them. Third, other program-
mers’ groups who are responsible for the operation of
particular installations of the system, and thus receive
documentation of the system and full guidance on its use
from the producer’s staff, regularly encounter difficulties
that upon consultation with the producer’s installation
and fault finding programmer are traced to inadequate
understanding of the existing documentation, but which
can be cleared up easily by the installation and fault find-
ing programmers.

The conclusion seems inescapable that at least with
certain kinds of large programs, the continued adaption,
modification, and correction of errors in them, is essen-
tially dependent on a certain kind of knowledge possessed
by a group of programmers who are closely and continu-
ously connected with them.

Ryle’s Notion of Theory

If it is granted that programming must involve, as the
essential part, a building up of the programmers’ knowl-
edge, the next issue is to characterize that knowledge
more closely. What will be considered here is the sugges-
tion that the programmers’ knowledge properly should
be regarded as a theory, in the sense of Ryle [11]. Very

briefly, a person who has or possesses a theory in this
sense knows how to do certain things and in addition
can support the actual doing with explanations, justi-
fications, and answers to queries, about the activity of
concern. It may be noted that Ryle’s notion of the-
ory appears as an example of what K. Popper [10] calls
unembodied World 3 objects and thus has a defensible
philosophical standing. In the present section we shall
describe Ryle’s notion of theory in more detail.

Ryle [11] develops his notion of theory as part of his
analysis of the nature of intellectual activity, particularly
the manner in which intellectual activity differs from, and
goes beyond, activity that is merely intelligent. In intel-
ligent behaviour the person displays, not any particular
knowledge of facts, but the ability to do certain things,
such as to make and appreciate jokes, to talk grammat-
ically, or to fish. More particularly, the intelligent per-
formance is characterized in part by the person’s doing
them well, according to certain criteria, but further dis-
plays the person’s ability to apply the criteria so as to
detect and correct lapses, to learn from the examples
of others, and so forth. It may be noted that this no-
tion of intelligence does not rely on any notion that the
intelligent behaviour depends on the person’s following
or adhering to rules, prescriptions, or methods. On the
contrary, the very act of adhering to rules can be done
more or less intelligently; if the exercise of intelligence
depended on following rules there would have to be rules
about how to follow rules, and about how to follow the
rules about following rules, etc. in an infinite regress,
which is absurd.

What characterizes intellectual activity, over and be-
yond activity that is merely intelligent, is the person’s
building and having a theory, where theory is understood
as the knowledge a person must have in order not only to
do certain things intelligently but also to explain them,
to answer queries about them, to argue about them, and
so forth. A person who has a theory is prepared to enter
into such activities; while building the theory the person
is trying to get it.

The notion of theory in the sense used here applies not
only to the elaborate constructions of specialized fields
of enquiry, but equally to activities that any person who
has received education will participate in on certain oc-
casions. Even quite unambitious activities of everyday
life may give rise to people’s theorizing, for example in
planning how to place furniture or how to get to some
place by means of certain means of transportation.

The notion of theory employed here is explicitly not
confined to what may be called the most general or ab-
stract part of the insight. For example, to have New-
ton’s theory of mechanics as understood here it is not
enough to understand the central laws, such as that force
equals mass times acceleration. In addition, as described
in more detail by Kuhn [4], the person having the theory
must have an understanding of the manner in which the
central laws apply to certain aspects of reality, so as to

2



be able to recognize and apply the theory to other similar
aspects. A person having Newton’s theory of mechanics
must thus understand how it applies to the motions of
pendulums and the planets, and must be able to recog-
nize similar phenomena in the world, so as to be able to
employ the mathematically expressed rules of the theory
properly.

The dependence of a theory on a grasp of certain
kinds of similarity between situations and events of the
real world gives the reason why the knowledge held by
someone who has the theory could not, in principle, be
expressed in terms of rules. In fact, the similarities in
question are not, and cannot be, expressed in terms of
criteria, no more than the similarities of many other kinds
of objects, such as human faces, tunes, or tastes of wine,
can be thus expressed.

The Theory To Be Built by the Programmer

In terms of Ryle’s notion of theory, what has to be built
by the programmer is a theory of how certain affairs of
the world will be handled by, or supported by, a com-
puter program. On the Theory Building View of pro-
gramming the theory built by the programmers has pri-
macy over such other products as program texts, user
documentation, and additional documentation such as
specifications.

In arguing for the Theory Building View, the basic
issue is to show how the knowledge possessed by the pro-
grammer by virtue of his or her having the theory neces-
sarily, and in an essential manner, transcends that which
is recorded in the documented products. The answers to
this issue is that the programmer’s knowledge transcends
that given in documentation in at least three essential ar-
eas:

1) The programmer having the theory of the program
can explain how the solution relates to the affairs of the
world that it helps to handle. Such an explanation will
have to be concerned with the manner in which the af-
fairs of the world, both in their overall characteristics and
their details, are, in some sense, mapped into the pro-
gram text and into any additional documentation. Thus
the programmer must be able to explain, for each part
of the program text and for each of its overall structural
characteristics, what aspect or activity of the world is
matched by it. Conversely, for any aspect or activity of
the world the programmer is able to state its manner of
mapping into the program text. By far the largest part
of the world aspects and activities will of course lie out-
side the scope of the program text, being irrelevant in
the context. However, the decision that a part of the
world is relevant can only be made by someone who un-
derstands the whole world. This understanding must be
contributed by the programmer.

2) The programmer having the theory of the program
can explain why each part of the program is what it is,
in other words is able to support the actual program text
with a justification of some sort. The final basis of the

justification is and must always remain the programmer’s
direct, intuitive knowledge or estimate. This holds even
where the justification makes use of reasoning, perhaps
with application of design rules, quantitative estimates,
comparisons with alternatives, and such like, the point
being that the choice of the principles and rules, and the
decision that they are relevant to the situation at hand,
again must in the final analysis remain a matter of the
programmer’s direct knowledge.

3) The programmer having the theory of the program
is able to respond constructively to any demand for a
modification of the program so as to support the affairs
of the world in a new manner. Designing how a modifi-
cation is best incorporated into an established program
depends on the perception of the similarity of the new
demand with the operational facilities already built into
the program. The kind of similarity that has to be per-
ceived is one between aspects of the world. It only makes
sense to the agent who has knowledge of the world, that
is to the programmer, and cannot be reduced to any lim-
ited set of criteria or rules, for reasons similar to the ones
given above why the justification of the program cannot
be thus reduced.

While the discussion of the present section presents
some basic arguments for adopting the Theory Building
View of programming, an assessment of the view should
take into account to what extent it may contribute to
a coherent understanding of programming and its prob-
lems. Such matters will be discussed in the following
sections.

Problems and Costs of Program Modifications

A prominent reason for proposing the Theory Building
View of programming is the desire to establish an in-
sight into programming suitable for supporting a sound
understanding of program modifications. This question
will therefore be the first one to be taken up for analysis.

One thing seems to be agreed by everyone, that soft-
ware will be modified. It is invariably the case that a
program, once in operation, will be felt to be only part
of the answer to the problems at hand. Also the very use
of the program itself will inspire ideas for further useful
services that the program ought to provide. Hence the
need for ways to handle modifications.

The question of program modifications is closely tied
to that of programming costs. In the face of a need for a
changed manner of operation of the program, one hopes
to achieve a saving of costs by making modifications of an
existing program text, rather than by writing an entirely
new program.

The expectation that program modifications at low
cost ought to be possible is one that calls for closer analy-
sis. First it should be noted that such an expectation can-
not be supported by analogy with modifications of other
complicated man–made constructions. Where modifica-
tions are occasionally put into action, for example in the

3



case of buildings, they are well known to be expensive and
in fact complete demolition of the existing building fol-
lowed by new construction is often found to be preferable
economically. Second, the expectation of the possibility
of low cost program modifications conceivably finds sup-
port in the fact that a program is a text held in a medium
allowing for easy editing. For this support to be valid it
must clearly be assumed that the dominating cost is one
of text manipulation. This would agree with a notion of
programming as text production. On the Theory Build-
ing View this whole argument is false. This view gives no
support to an expectation that program modifications at
low cost are generally possible.

A further closely related issue is that of program flex-
ibility. In including flexibility in a program we build into
the program certain operational facilities that are not im-
mediately demanded, but which are likely to turn out to
be useful. Thus a flexible program is able to handle cer-
tain classes of changes of external circumstances without
being modified.

It is often stated that programs should be designed
to include a lot of flexibility, so as to be readily adapt-
able to changing circumstances. Such advice may be rea-
sonable as far as flexibility that can be easily achieved
is concerned. However, flexibility can in general only
be achieved at a substantial cost. Each item of it has
to be designed, including what circumstances it has to
cover and by what kind of parameters it should be con-
trolled. Then it has to be implemented, tested, and de-
scribed. This cost is incurred in achieving a program fea-
ture whose usefulness depends entirely on future events.
It must be obvious that built–in program flexibility is no
answer to the general demand for adapting programs to
the changing circumstances of the world.

In a program modification an existing programmed
solution has to be changed so as to cater for a change in
the real world activity it has to match. What is needed
in a modification, first of all, is a confrontation of the
existing solution with the demands called for by the de-
sired modification. In this confrontation the degree and
kind of similarity between the capabilities of the exist-
ing solution and the new demands has to be determined.
This need for a determination of similarity brings out the
merit of the Theory Building View. Indeed, precisely in a
determination of similarity the shortcoming of any view
of programming that ignores the central requirement for
the direct participation of persons who possess the ap-
propriate insight becomes evident. The point is that the
kind of similarity that has to be recognized is accessible
to the human beings who possess the theory of the pro-
gram, although entirely outside the reach of what can
be determined by rules, since even the criteria on which
to judge it cannot be formulated. From the insight into
the similarity between the new requirements and those
already satisfied by the program, the programmer is able
to design the change of the program text needed to im-
plement the modification.

In a certain sense there can be no question of a theory
modification, only of a program modification. Indeed,
a person having the theory must already be prepared
to respond to the kinds of questions and demands that
may give rise to program modifications. This observation
leads to the important conclusion that the problems of
program modification arise from acting on the assump-
tion that programming consists of program text produc-
tion, instead of recognizing programming as an activity
of theory building.

On the basis of the Theory Building View the decay
of a program text as a result of modifications made by
programmers without a proper grasp of the underlying
theory becomes understandable. As a matter of fact, if
viewed merely as a change of the program text and of
the external behaviour of the execution, a given desired
modification may usually be realized in many different
ways, all correct. At the same time, if viewed in relation
to the theory of the program these ways may look very
different, some of them perhaps conforming to that the-
ory or extending it in a natural way, while others may
be wholly inconsistent with that theory, perhaps having
the character of unintegrated patches on the main part
of the program. This difference of character of various
changes is one that can only make sense to the program-
mer who possesses the theory of the program. At the
same time the character of changes made in a program
text is vital to the longer term viability of the program.
For a program to retain its quality it is mandatory that
each modification is firmly grounded in the theory of it.
Indeed, the very notion of qualities such as simplicity
and good structure can only be understood in terms of
the theory of the program, since they characterize the
actual program text in relation to such program texts
that might have been written to achieve the same exe-
cution behaviour, but which exist only as possibilities in
the programmer’s understanding.

Program Life, Death, and Revival

A main claim of the Theory Building View of program-
ming is that an essential part of any program, the the-
ory of it, is something that could not conceivably be ex-
pressed, but is inextricably bound to human beings. It
follows that in describing the state of the program it is
important to indicate the extent to which programmers
having its theory remain in charge of it. As a way in
which to emphasize this circumstance one might extend
the notion of program building by notions of program
life, death, and revival. The building of the program is
the same as the building of the theory of it by and in
the team of programmers. During the program life a
programmer team possessing its theory remains in active
control of the program, and in particular retains control
over all modifications. The death of a program happens
when the programmer team possessing its theory is dis-
solved. A dead program may continue to be used for
execution in a computer and to produce useful results.
The actual state of death becomes visible when demands

4



for modifications of the program cannot be intelligently
answered. Revival of a program is the rebuilding of its
theory by a new programmer team.

The extended life of a program according to these no-
tions depends on the taking over by new generations of
programmers of the theory of the program. For a new
programmer to come to possess an existing theory of a
program it is insufficient that he or she has the opportu-
nity to become familiar with the program text and other
documentation. What is required is that the new pro-
grammer has the opportunity to work in close contact
with the programmers who already possess the theory,
so as to be able to become familiar with the place of the
program in the wider context of the relevant real world
situations and so as to acquire the knowledge of how the
program works and how unusual program reactions and
program modifications are handled within the program
theory. This problem of education of new programmers
in an existing theory of a program is quite similar to that
of the educational problem of other activities where the
knowledge of how to do certain things dominates over
the knowledge that certain things are the case, such as
writing and playing a music instrument. The most im-
portant educational activity is the student’s doing the
relevant things under suitable supervision and guidance.
In the case of programming the activity should include
discussions of the relation between the program and the
relevant aspects and activities of the real world, and of
the limits set on the real world matters dealt with by the
program.

A very important consequence of the Theory Building
View is that program revival, that is reestablishing the
theory of a program merely from the documentation, is
strictly impossible. Lest this consequence may seem un-
reasonable it may be noted that the need for revival of an
entirely dead program probably will rarely arise, since it
is hardly conceivable that the revival would be assigned
to new programmers without at least some knowledge of
the theory had by the original team. Even so the The-
ory Building View suggests strongly that program revival
should only be attempted in exceptional situations and
with full awareness that it is at best costly, and may lead
to a revived theory that differs from the one originally
had by the program authors and so may contain discrep-
ancies with the program text.

In preference to program revival, the Theory Building
View suggests, the existing program text should be dis-
carded and the new–formed programmer team should be
given the opportunity to solve the given problem afresh.
Such a procedure is more likely to produce a viable pro-
gram than program revival, and at no higher, and possi-
bly lower, cost. The point is that building a theory to fit
and support an existing program text is a difficult, frus-
trating, and time consuming activity. The new program-
mer is likely to feel torn between loyalty to the existing
program text, with whatever obscurities and weaknesses
it may contain, and the new theory that he or she has to
build up, and which, for better or worse, most likely will

differ from the original theory behind the program text.

Similar problems are likely to arise even when a pro-
gram is kept continuously alive by an evolving team of
programmers, as a result of the differences of competence
and background experience of the individual program-
mers, particularly as the team is being kept operational
by inevitable replacements of the individual members.

Method and Theory Building

Recent years has seen much interest in programming
methods. In the present section some comments will be
made on the relation between the Theory Building View
and the notions behind programming methods.

To begin with, what is a programming method? This
is not always made clear, even by authors who recom-
mend a particular method. Here a programming method
will be taken to be a set of work rules for programmers,
telling what kind of things the programmers should do,
in what order, which notations or languages to use, and
what kinds of documents to produce at various stages.

In comparing this notion of method with the Theory
Building View of programming, the most important is-
sue is that of actions or operations and their ordering. A
method implies a claim that program development can
and should proceed as a sequence of actions of certain
kinds, each action leading to a particular kind of docu-
mented result. In building the theory there can be no
particular sequence of actions, for the reason that a the-
ory held by a person has no inherent division into parts
and no inherent ordering. Rather, the person possessing
a theory will be able to produce presentations of vari-
ous sorts on the basis of it, in response to questions or
demands.

As to the use of particular kinds of notation or for-
malization, again this can only be a secondary issue since
the primary item, the theory, is not, and cannot be, ex-
pressed, and so no question of the form of its expression
arises.

It follows that on the Theory Building View, for the
primary activity of the programming there can be no
right method.

This conclusion may seem to conflict with established
opinion, in several ways, and might thus be taken to be
an argument against the Theory Building View. Two
such apparent contradictions shall be taken up here, the
first relating to the importance of method in the pursuit
of science, the second concerning the success of methods
as actually used in software development.

The first argument is that software development
should be based on scientific manners, and so should em-
ploy procedures similar to scientific methods. The flaw
of this argument is the assumption that there is such a
thing as scientific method and that it is helpful to scien-
tists. This question has been the subject of much debate
in recent years, and the conclusion of such authors as

5



Feyerabend [2], taking his illustrations from the history
of physics, and Medawar [5], arguing as a biologist, is
that the notion of scientific method as a set of guidelines
for the practising scientist is mistaken.

This conclusion is not contradicted by such work as
that of Polya [8, 9] on problem solving. This work takes
its illustrations from the field of mathematics and leads
to insight which is also highly relevant to programming.
However, it cannot be claimed to present a method on
which to proceed. Rather, it is a collection of suggestions
aiming at stimulating the mental activity of the problem
solver, by pointing out different modes of work that may
be applied in any sequence.

The second argument that may seem to contradict
the dismissal of method of the Theory Building View is
that the use of particular methods has been successful,
according to published reports. To this argument it may
be answered that a methodically satisfactory study of
the efficacy of programming methods so far never seems
to have been made. Such a study would have to em-
ploy the well established technique of controlled exper-
iments (cf. Brooks, 1980 [1] or Moher and Schneider,
1982 [6]). The lack of such studies is explainable partly
by the high cost that would undoubtedly be incurred in
such investigations if the results were to be significant,
partly by the problems of establishing in an operational
fashion the concepts underlying what is called methods
in the field of program development. Most published re-
ports on such methods merely describe and recommend
certain techniques and procedures, without establishing
their usefulness or efficacy in any systematic way. An
elaborate study of five different methods by C. Floyd
and several co–workers [3] concludes that the notion of
methods as systems of rules that in an arbitrary con-
text and mechanically will lead to good solutions is an
illusion. What remains is the effect of methods in the
education of programmers. This conclusion is entirely
compatible with the Theory Building View of program-
ming. Indeed, on this view the quality of the theory built
by the programmer will depend to a large extent on the
programmer’s familiarity with model solutions of typical
problems, with techniques of description and verification,
and with principles of structuring systems consisting of
many parts in complicated interactions. Thus many of
the items of concern of methods are relevant to theory
building. Where the Theory Building View departs from
that of the methodologists is on the question of which
techniques to use and in what order. On the Theory
Building View this must remain entirely a matter for the
programmer to decide, taking into account the actual
problem to be solved.

Programmers’ Status and the Theory Building View

The areas where the consequences of the Theory Build-
ing View contrast most strikingly with those of the more
prevalent current views are those of the programmers’
personal contribution to the activity and of the program-
mers’ proper status.

The contrast between the Theory Building View and
the more prevalent view of the programmers’ personal
contribution is apparent in much of the common discus-
sion of programming. As just one example, consider the
study of modifiability of large software systems by Os-
karsson [7]. This study gives extensive information on
a considerable number of modifications in one release
of a large commercial system. The description covers
the background, substance, and implementation, of each
modification, with particular attention to the manner
in which the program changes are confined to particu-
lar program modules. However, there is no suggestion
whatsoever that the implementation of the modifications
might depend on the background of the 500 programmers
employed on the project, such as the length of time they
have been working on it, and there is no indication of
the manner in which the design decisions are distributed
among the 500 programmers. Even so the significance
of an underlying theory is admitted indirectly in state-
ments such as that ‘decisions were implemented in the
wrong block’ and in a reference to ‘a philosophy of AXE’.
However, by the manner in which the study is conducted
these admissions can only remain isolated indications.

More generally, much current discussion of program-
ming seems to assume that programming is similar to in-
dustrial production, the programmer being regarded as a
component of that production, a component that has to
be controlled by rules of procedure and which can be re-
placed easily. Another related view is that human beings
perform best if they act like machines, by following rules,
with a consequent stress on formal modes of expression,
which make it possible to formulate certain arguments in
terms of rules of formal manipulation. Such views agree
well with the notion, seemingly common among persons
working with computers, that the human mind works like
a computer. At the level of industrial management these
views support treating programmers as workers of fairly
low responsibility, and only brief education.

On the Theory Building View the primary result of
the programming activity is the theory held by the pro-
grammers. Since this theory by its very nature is part of
the mental possession of each programmer, it follows that
the notion of the programmer as an easily replaceable
component in the program production activity has to be
abandoned. Instead the programmer must be regarded
as a responsible developer and manager of the activity in
which the computer is a part. In order to fill this position
he or she must be given a permanent position, of a status
similar to that of other professionals, such as engineers
and lawyers, whose active contributions as employers of
enterprises rest on their intellectual proficiency.

The raising of the status of programmers suggested
by the Theory Building View will have to be supported
by a corresponding reorientation of the programmer ed-
ucation. While skills such as the mastery of notations,
data representations, and data processes, remain impor-
tant, the primary emphasis would have to turn in the
direction of furthering the understanding and talent for

6



theory formation. To what extent this can be taught at
all must remain an open question. The most hopeful ap-
proach would be to have the student work on concrete
problems under guidance, in an active and constructive
environment.

Conclusions

Accepting program modifications demanded by changing
external circumstances to be an essential part of pro-
gramming, it is argued that the primary aim of program-
ming is to have the programmers build a theory of the
way the matters at hand may be supported by the ex-

ecution of a program. Such a view leads to a notion of
program life that depends on the continued support of
the program by programmers having its theory. Further,
on this view the notion of a programming method, un-
derstood as a set of rules of procedure to be followed by
the programmer, is based on invalid assumptions and so
has to be rejected. As further consequences of the view,
programmers have to be accorded the status of responsi-
ble, permanent developers and managers of the activity
of which the computer is a part, and their education has
to emphasize the exercise of theory building, side by side
with the acquisition of knowledge of data processing and
notations.

References

1. Brooks, R. E. Studying programmer behaviour experimentally. Comm. ACM 23(4): 207–213, 1980.

2. Feyerabend, P. Against Method. London, Verso Editions, 1978; ISBN: 86091–700–2.

3. Floyd, C. Eine Untersuchung von Software–Entwicklungs–Methoden. Pp. 248–274 in Programmierumgebungen
und Compiler, ed H. Morgenbrod and W. Sammer, Tagung I/1984 des German Chapter of the ACM, Stuttgart,
Teubner Verlag, 1984; ISBN: 3–519–02437–3.

4. Kuhn, T.S. The Structure of Scientific Revolutions, Second Edition. Chicago, University of Chicago Press, 1970;
ISBN: 0–226–45803–2.

5. Medawar, P. Pluto’s Republic. Oxford, University Press, 1982: ISBN: 0–19–217726–5.

6. Moher, T., and Schneider, G. M. Methodology and experimental research in software engineering, Int. J.
Man–Mach. Stud. 16: 65–87, 1. Jan. 1982.

7. Oskarsson, Ö Mechanisms of modifiability in large software systems Linköping Studies in Science and Technology,
Dissertations, no. 77, Linköping, 1982; ISBN: 91–7372–527–7.

8. Polya, G. How To Solve It . New York, Doubleday Anchor Book, 1957.

9. Polya, G. Mathematics and Plausible Reasoning. New Jersey, Princeton University Press, 1954.

10. Popper, K. R., and Eccles, J. C. The Self and Its Brain. London, Routledge and Kegan Paul, 1977.

11. Ryle, G. The Concept of Mind. Harmondsworth, England, Penguin, 1963, first published 1949. Applying
“Theory Building”

Applying “Theory Building”

Viewing programming as theory building helps us under-
stand “metaphor building” activity in Extreme Program-
ming (XP), and the respective roles of tacit knowledge
and documentation in passing along design knowledge.

The Metaphor as a Theory. Kent Beck suggested that
it is useful to a design team to simplify the general de-
sign of a program to match a single metaphor. Examples
might be, “This program really looks like an assembly
line, with things getting added to a chassis along the
line,” or “This program really looks like a restaurant,
with waiters and menus, cooks and cashiers.”

If the metaphor is good, the many associations the
designers create around the metaphor turn out to be ap-
propriate to their programming situation.

That is exactly Naur’s idea of passing along a theory
of the design.

If “assembly line” is an appropriate metaphor, then
later programmers, considering what they know about as-
sembly lines, will make guesses about the structure of the
software at hand and find that their guesses are “close.”
That is an extraordinary power for just the two words,
“assembly line.”

The value of a good metaphor increases with the num-
ber of designers. The closer each person’s guess is “close”
to the other people’s guesses, the greater the resulting
consistency in the final system design.

Imagine 10 programmers working as fast as they can,
in parallel, each making design decisions and adding
classes as she goes. Each will necessarily develop her
own theory as she goes. As each adds code, the the-
ory that binds their work becomes less and less coherent,
more and more complicated. Not only maintenance gets
harder, but their own work gets harder. The design easily
becomes a “kludge.” If they have a common theory, on
the other hand, they add code in ways that fit together.

7



An appropriate, shared metaphor lets a person guess
accurately where someone else on the team just added
code, and how to fit her new piece in with it.

Tacit Knowledge and Documentation. The documen-
tation is almost certainly behind the current state of the
program, but people are good at looking around. What
should you put into the documentation?

That which helps the next programmer build an ad-
equate theory of the program.

This is enormously important. The purpose of the
documentation is to jog memories in the reader, set
up relevant pathways of thought about experiences and
metaphors.

This sort of documentation is more stable over the life
of the program than just naming the pieces of the system
currently in place.

The designers are allowed to use whatever forms of ex-
pression are necessary to set up those relevant pathways.
They can even use multiple metaphors, if they don’t find
one that is adequate for the entire program. They might
say that one section implements a fractal compression al-

gorithm, a second is like an accounting ledger, the user
interface follows the model-observer design pattern, and
so on.

Experienced designers often start their documenta-
tion with just

• The metaphors
• Text describing the purpose of each major compo-

nent
• Drawings of the major interactions between the ma-

jor components

These three items alone take the next team a long
way to constructing a useful theory of the design.

The source code itself serves to communicate a the-
ory to the next programmer. Simple, consistent naming
conventions help the next person build a coherent the-
ory. When people talk about “clean code,” a large part
of what they are referring to is how easily the reader can
build a coherent theory of the system.

Documentation cannot—and so need not—say every-
thing. Its purpose is to help the next programmer build
an accurate theory about the system.

8


