
From Rational Number Reconstruction to Set Reconciliation and

File Synchronization

Antoine Amarilli, Fabrice Ben Hamouda, Florian Bourse,
Robin Morisset, David Naccache, and Pablo Rauzy

École normale supérieure, Département d'informatique
45, rue d'Ulm, f-75230, Paris Cedex 05, France.

firstname.lastname@ens.fr (except for fabrice.ben.hamouda@ens.fr)

Abstract. This work revisits set reconciliation, the problem of synchronizing two multisets of �xed-
size values while minimizing transmission complexity. We propose a new number-theoretic reconciliation
protocol called Divide and Factor (D&F) that achieves optimal asymptotic transmission complexity �
as do previously known alternative algorithms. We analyze the computational complexities of various
D&F variants, study the problem of synchronizing sets of variable-size �les using hash functions and
apply D&F to synchronize �le hierarchies taking �le locations into account.

We describe btrsync, our open-source D&F implementation, and benchmark it against the popular
software rsync. It appears that btrsync transmits much less data than rsync, at the expense of a
relatively modest computational overhead.

1 Introduction

File synchronization is the important practical problem of retrieving a �le hierarchy from a remote host
given an outdated version of the retrieved �les. In many cases, the bottleneck is network bandwidth. Hence,
transmission must be optimized using the information given by the outdated �les to the fullest possible
extent. Popular �le synchronization programs such as rsync use rolling checksums to skip remote �le parts
matching local �le parts; however, such programs are usually unable to use the outdated �les in more subtle
ways, e.g., detect that information is already present on the local machine but at a di�erent location or
under a di�erent name.

File synchronization is closely linked to the theoretical Set Reconciliation Problem: given two sets of �xed-
size data items on di�erent machines, determine the sets' symmetric di�erence while minimizing transmission
complexity. The size of the symmetric di�erence (i.e., the di�erence's cardinality times the elements' size)
is a clear information-theoretic lower bound on the quantity of information to transfer, and several known
algorithms already achieve this bound [10].

This paper considers set reconciliation and �le synchronization from both a theoretical and practical
perspective:
� Section 2 introduces Divide and Factor (D&F), a new number-theoretic set reconciliation algorithm. D&F

represents the items to synchronize as prime numbers, accumulates information during a series of rounds
and computes the sets' di�erence using Chinese remaindering and rational number reconstruction.

� Section 3 shows that D&F's transmission complexity is linear in the size of the symmetric di�erence of
the multisets to reconcile.

� Section 4 extends D&F to perform �le reconciliation, i.e., reconcile sets of variable-size �les. We show how
to choose the hash functions to optimally trade transmission for success probability. Several elements in
this analysis are generic and apply to all set reconciliation algorithms.

� Section 5 studies D&F's time complexity and presents constant-factor trade-o�s between transmission
and computation.

� Section 6 compares D&F with existing set reconciliation algorithms.
� Section 7 extends D&F to �le synchronization, taking into account �le locations and dealing intelligently

(i.e., in-place) with �le moves. We describe an algorithm applying a sequence of �le moves while avoiding
the excessive use of temporary �les.

� Section 8 presents btrsync, our D&F implementation, and benchmarks it against rsync. Experiments
reveal that btrsync requires more computation than rsync but transmits less data in most cases.

2 Divide and Factor Set Reconciliation

This section introduces Divide and Factor. After introducing the problem and notations, we present a basic

D&F version assuming that the number of di�erences between the multisets to reconcile is bounded by some
constant t known to the parties. We then extend this basic protocol to a complete algorithm dealing with
any number of di�erences.

2.1 Problem De�nition and Notations

Oscar possesses an old version of a multiset H = {h1, . . . , hn} that he wishes to update. Neil has a newer,
up-to-date multiset H′ = {h′1, . . . , h′n′}. The hi, h′i are u-bit primes. Note that Neil does not need to learn
H1.

Let D = H \H′ be the multiset of values owned by Neil but not by Oscar, with adequate multiplicities.
Likewise, let D′ = H′ \ H be the values owned by Oscar and not by Neil.

Let T = #D + #D′ = #(D∆D′) be the number of di�erences between H and H′, where D∆D =
(D \ D′) ∪ (D′ \ D).

2.2 Basic Protocol with Bounded T

Assume that T ≤ t for some �xed t known by Neil and Oscar. The initial phases of the protocol are as
follows:

� Generate a prime p such that 22ut ≤ p < 22ut+1.
� Oscar computes the redundancy c =

∏n
i=1 hi mod p and sends it to Neil.

� Neil computes c′ =
∏n
i=1 mod p and s = c′

c mod p.

Because T ≤ t, H and H′ di�er by at most t elements and s can be written as follows:

s =
a

b
mod p where

{
a =

∏
h′
i∈H′\H h′i ≤ 2ut − 1

b =
∏
hi∈H\H′ hi ≤ 2ut − 1

.

The problem of e�ciently recovering a and b from s is called Rational Number Reconstruction

(RNR) [11,15]. The following theorem (cf. Theorem 1 of [7]) guarantees that RNR can be solved e�ciently
in the present setting:

Theorem 1. Let a, b ∈ Z be two co-prime integers such that 0 ≤ a ≤ A and 0 < b ≤ B. Let p > 2AB be a

prime and s = ab−1 mod p. Then a and b are uniquely de�ned given s and p, and can be recovered from A,
B, s, and p in polynomial time.

Taking A = B = 2ut− 1, we have AB < p, since 22ut ≤ p < 22ut+1. Moreover, 0 ≤ a ≤ A and 0 < b ≤ B.
Thus Oscar can recover a and b from s in polynomial time e.g., using Gauÿ's algorithm for �nding the
shortest vector in a bi-dimensional lattice [14].

Oscar and Neil can then test, respectively, the divisibility of a and b by elements of the sets H and H′ to
identify the di�erences between H and H′ and settle them2. This basic protocol is depicted in Figure 1.

1 The protocol can be easily transformed to do so without changing asymptotic transmission complexities.
2 Actually, this only works if H and H′ are sets. In the case of multisets, if the multiplicity of h′i in H′ is j′, then
we would need to check the divisibility of b by hi, h2

i , . . . , h
j′

i . For the sake of clarity we will assume that H and H′
are sets. Adaptation to the general case is straightforward.

2

Oscar Neil

c←
∏n
i=1 hi mod p

c−−−−−−−−→ c′ ←
∏n′

i=1 h
′
i mod p

s← c′/c mod p
reconstruct a, b from s

D ← {hi ∈ H | b mod hi = 0} D′, b←−−−−−−−− D′ ← {h′i ∈ H′ | a mod h′i = 0}

Fig. 1. Basic D&F protocol (assuming that T ≤ t).

2.3 Full Protocol with Unbounded T

In practice, we cannot assume that we have an upper bound t on the number of di�erences T . This section
extends the protocol to any T . We do this in two steps. We �rst show that we can slightly change the protocol
to detect whether a choice of t was large enough for a successful reconciliation (which is guaranteed to be
true if t was ≥ T). We then construct a protocol that works with any T .

Detecting Reconciliation Failures. If t < T , with high probability, a will not factor completely over the
set of primes H′3. We will (improperly) consider that in such a case a is a random (tu)-bit number. For each
i, the probability that h′i divides a is at most 1/2u. The probability that

∏
h′i mod a = 0 is roughly the

probability that exactly t h′i's amongst n′ divide a, i.e.,
(
n′

t

)
2−ut(1 − 2−u)n

′−t ≤ n2−ut which is very small
if 2u � n′, a condition that we assume hereafter.

Thus, Neil can check very quickly that
∏
h′i mod a = 0 without sending any data to Oscar. We call ⊥1

the event where this test failed (which implies that reconciliation failed), and ⊥2 the event where this test
succeeds but reconciliation failed (which is very unlikely according to the previous discussion).

To handle ⊥2, we will use a collision-resistant hash function Hash, such as SHA: Before any exchanges
take place, Neil will send to Oscar H = Hash(H′). After computing D, Oscar will compute a candidate H′
from {H,D′,D} and check that this candidate H′ hashes into H. As Hash is collision-resistant, we can detect
event ⊥2 in this fashion.

Complete D&F Protocol. To extend the protocol to an arbitrary T , assume that Oscar and Neil agree on
an in�nite set of primes p1, p2, . . . As long as ⊥1 or ⊥2 occurs, Neil and Oscar will repeat the protocol with
a new p` to learn more information on H′. Oscar will keep accumulating information about the di�erence
between H and H′ during these protocol runs (called rounds).

Formally, assume that 22utk ≤ pk < 22utk+1. Let Pk =
∏k
i=1 pi and Tk =

∑k
i=1 ti. After receiving the

redundancies c1, . . . , ck corresponding to p1, . . . , pk, Neil has as much information as if Oscar would have
transmitted a redundancy Ck modulo Pk. Oscar can indeed compute Sk = C ′k/Ck from sk = c′k/ck and Sk−1
using the Chinese Remainder Theorem (CRT):

Sk = CRT(Sk−1, Pk−1, sk, pk)

= Sk−1(p
−1
k mod Pk−1)pk + sk(P

−1
k−1 mod pk)Pk−1 mod Pk.

The full protocol is given in Figure 2 page 4. Note that no information is lost and that the transmitted
modular knowledge about the di�erence adds up until it becomes su�ciently large to reconcile H and H′.
Therefore, the worst-case number of necessary rounds κ is the smallest integer k such that Tk ≥ T .

In what follows, we will focus on two interesting choices of tk:

� Fixed t: ∀k, tk = t for some �xed t, in which case κ =
⌈
T
t

⌉
;

� Exponential tk: ∀k, tk = 2kt for some �xed t, in which case κ =
⌈
log2

T
t

⌉
.

3 i.e.,
∏
h′i mod a 6= 0.

3

Oscar Neil

Initial phase: Neil sends a global hash to detect ⊥2

H ← Hash(H′)
H←−−−−−−−−

Main phase: Neil amasses modular information on the di�erence between H and H′

Round 1

c1 ←
∏n
i=1 hi mod p1

c1−−−−−−−−→ c′1 ←
∏n′

i=1 h
′
i mod p1

s1 ← c′1/c1 mod p1
S1 ← s1
reconstruct a, b from S1 (modP1)
D′ ← {h′i ∈ H′ | a mod h′i = 0}
if
∏
h∈D′ h mod P1 = a

then go to �nal phase
else continue (event ⊥1)

Round 2

c2 ←
∏n
i=1 hi mod p2

c2−−−−−−−−→ c′2 ←
∏n′

i=1 h
′
i mod p2

s2 ← c′2/c2 mod p2
S2 ← CRT(S1, P1, s2, p2)
reconstruct a, b from S2 (modP2)
D′ ← {h′i ∈ H′ | a mod h′i = 0}
if
∏
h∈D′ h mod P2 = a

then go to �nal phase
else continue (event ⊥1)

...

Final phase: Oscar obtains a candidate H′ and hash-checks it

D ← {hi ∈ H | b mod hi}
D′, b←−−−−−−−−

compute H′ from {H,D,D′}
if Hash(H′) 6= H
then go back to Main phase
(event ⊥2)

else the protocol is complete.

Fig. 2. Complete D&F Protocol (for any T).

3 Transmission Complexity

This section proves that D&F achieves optimal asymptotic transmission complexity.

Assuming that no ⊥2 occurred (since ⊥2's happen with negligible probability), D&F's transmission
complexity is:

κ∑
k=1

log ck + log b+ log |D′| ≤
κ∑
k=1

(utk + 1) +
1

2
(uTκ) + uT ≤ 5

2
uTκ + uκ,

where κ is the required number of rounds.

For the two choices of tk that we mentioned, transmission complexity is:

� Fixed t: κ = dT/te, Tκ = κt < T + t and transmission is ≤ 5
2u(T + t) + dT/te = O(uT);

� Exponential t: κ = dlog(T/t′)e, Tκ < 2T and transmission is ≤ 5
2 × 2uT + dlog(T/t′)e = O(uT).

4

While asymptotic transmission complexities are identical for both choices, we note that the �xed t option
is slightly better in terms of constant factors and halves transmission with respect to the exponential option.
However, as we will see in Section 5.2, an exponential t results in a lower computational complexity.

Note that in both cases asymptotic transmission complexity is proportional to the size of the symmetric
di�erence (i.e., the number of di�erences times the size of an individual element). This is also the information-
theoretic lower bound on the quantity of data needed to perform reconciliation. Hence, the protocol is
asymptotically optimal from a transmission complexity standpoint.

Probabilistic Decoding: Reducing p. We now describe an improvement that reduces transmission by a constant
factor at the expense of higher RNR failure rates. For simplicity, we will focus on one round D&F and denote
by p the current Pk. We will generate a p about twice smaller than the p recommended in Section 2.2, namely
2ut−1 ≤ p < 2ut.

Unlike Section 2.2, we do not have a �xed bound for a and b anymore; we only have a bound for the
product ab, namely ab ≤ 2ut.

Therefore, we de�ne t+ 1 couples of possible bounds: (Aj , Bj)0≤j≤t =
(
2uj , 2u(t−j)

)
.

Because 2ut−1 ≤ p < 2ut and ab ≤ 2ut, there must exist at least one index j such that 0 ≤ a ≤ Aj and
0 < b ≤ Bj . We can therefore apply Theorem 1 with A = Aj and B = Bj : since AjBj = 2ut < p, given
(Aj , Bj , p, s), one can recover (a, b), and hence Oscar can compute H′.

This variant will roughly halve transmission with respect to Section 2.2. The drawback is that, unlike
Section 2.2, we have no guarantee that such an (a, b) is unique. Namely, we could in theory stumble over an
(a′, b′) 6= (a, b) satisfying the equation a′b′ ≤ 2ut for some index j′ 6= j. We conjecture that, when u is large
enough, such failures happen with a negligible probability (that we do not try to estimate here). This should
lower the expected transmission complexity of this variant. In any case, thanks to hashing (H = Hash(H′)),
if a failure occurs, it will be detected.

4 From Set Reconciliation to File Reconciliation

We now show how to perform �le reconciliation using hashing and D&F. We then devise methods to reduce
the size of hashes and thus improve transmission by constant factors. The presented methods are generic
and can be applied to any set reconciliation protocol.

4.1 File Reconciliation Protocol

So far Oscar and Neil know how to synchronize sets of u-bit primes. They now want to reconcile �les modeled
as arbitrary length binary strings. Let F = {F1, . . . , Fn} be Oscar's set of �les and let F ′ = {F ′1, . . . , F ′n} be
Neil's. Let η = |F ∪ F ′| ≤ n+ n′ be the total number of �les.

A naïve way to reconcile F and F ′ is to simply hash the content of each �le into a prime and proceed as
before. Upon D&F's completion, Neil can send to Oscar the actual content of the �les matching the hashes
in D′, i.e., the �les that Oscar does not have.

More formally, de�ne for 1 ≤ i ≤ n, hi = HashPrime(Fi) and for 1 ≤ i ≤ n′, h′i = HashPrime(F ′i) where
HashPrime is a collision-resistant hash function into primes so that the mapping from F ∪ F ′ to H ∪H′ is
injective for all practical purposes. Section 5.1 shows how to construct such a hash function from usual hash
functions.

4.2 The File Laundry: Reducing u

What happens if we brutally shorten u in the basic D&F protocol? As expected by the birthday paradox, we
should start seeing collisions. In Appendix A, we analyze the statistics governing the appearance of collisions.
The average number of colliding �les is ∼ η(η − 1)2−u

′
where u′ = u − ln(u). For instance, the expected

number of collisions for η = 106 and 42-bit digests, the average number of colliding �les is < 4. We remark

5

that a collision can only yield a false positive, and never a false negative. In other words, while a collision may
make Oscar and Neil miss a real di�erence, it will never create a nonexistent di�erence ex nihilo. Thus, it
su�ces to replace HashPrime(F) by a diversi�ed ~k(F) = HashPrime(k|F) to quickly �lter-out �le di�erences
by repeating the protocol for k = 1, 2, . . . We call each complete D&F protocol repetition (which usually
involves several basic protocol rounds) an iteration. At each iteration, the parties will detect �les in F∆F ′
whose hash ~i,` or ~′i,` does not collide, reconciliate these di�erences, remove these �les from F and F ′ to
avoid further collisions, and �launder� again the remaining �les in the updated versions of F and F ′.

Let εη,u,k be the probability that at least one �le will persist colliding during k rounds. Assuming that η

is invariant between iterations, we �nd that εη,u,k ≤ n((η − 1)2−u
′
)k i.e., εη,u,k decreases exponentially in k

(e.g., ε106,42,2 ≤ 10−3%, see Appendix A.
We still need a condition to stop �laundering�, i.e., a condition ensuring that there are no more di�erences

hidden by collisions. Before we describe this condition, let us �rst spell out the three kinds of collisions that
can appear during iteration `:
1. Collisions in F ∩ F ′ (i.e., between common �les). These are never a problem because they cannot hide

any di�erences.
2. Collisions between between F ∩ F ′ and F∆F ′ (i.e., between a common �le of Oscar and Neil, and a

�le not in common). These collisions can be easily detected by Oscar or Neil, at the end of iteration `.
However, if there is a collision of this kind involving an h ∈ H∆H′, we will not be able to �nd the �le in
F∆F ′ matching h. For this reason, another D&F iteration will be necessary to reconcile this �le.

3. Collisions in F∆F ′ (i.e., between �les not in common). Such collisions hide real di�erences between F
and F ′ and cannot be detected without a further iteration. This is why we need a condition to detect
that no more collisions of this kind exist and stop laundering.
We propose the following method to decide termination. Before the �rst iteration, Neil sends a global

hash H ′ = Hash(Hash(F ′1), . . . , Hash(F
′
n′)) to Oscar. This H ′ should not be confused with the H sent at the

beginning of each iteration4. Now, if iteration ` is successful, Neil sends the list of Hash(F ′i) for the new �les
F ′i ∈ F ′ \ F whose hash ~′i,` does not collide with �les in F ′ ∩ F (i.e., type-2 collisions). Oscar can then use
H ′ to check whether a type-3 collision remains, in which case a new iteration is performed. If no type-2 or
type-3 collisions remain, then reconciliation is complete.

5 Computational Complexity

We now analyze D&F's computational complexity. We �rst describe the time complexity of a straightforward
implementation (Section 5.1), and then present four independent optimizations (Section 5.2). A summary of
all costs is given in Table 1. To simplify analysis, we assume that there are no collisions, and that n = n′.

5.1 Basic Complexity and Hashing Into Primes

Let µ(`) be the time required to multiply two `-bit numbers, with the assumption that ∀`, `′, µ(` + `′) ≥
µ(`) + µ(`′). For naïve (i.e., convolutional) algorithms, µ(`) = O(`2), but using FFT multiplication [12],
µ(`) = Õ(`) (where Õ(f(`)) is a shorthand for O(f(`) logk f(`)) for some k). FFT is experimentally faster
than convolutional methods from ` ∼ 106 and on. The modular division of a 2`-bit number by an `-bit
number and the reduction of a 2`-bit number modulo an `-bit number are also known to cost Õ(µ(`)) [3].
Indeed, in packages such as GMP, division and modular reduction run in Õ(`) for su�ciently large `.

The naïve complexity of HashPrime is u2µ(u), as per [8,2].
� A recommended implementation of HashPrime(F) consists in de�ning the digest as h = 2 · Hash(F |i) +

1 and increasing i until h is prime. Because there are roughly 2u

u u-bit primes we need to perform
(on average) u primality tests before �nding a suitable h. The cost of a Miller-Rabin primality test is
Õ(uµ(u)). Hence, the total cost of this implementation is Õ(u2µ(u)). A more precise analysis can be
found in [2].

4 H is a hash of the (potentially colliding) diversi�ed hashes ~(`|F).

6

� If u is large enough (e.g., 160) one might sacri�ce uniformity to avoid repeated �le hashings using
HashPrime(F) = NextPrime(Hash(F)).

� Yet another acceleration option consists in computing h = α bHash(F)/αc + 1, where α = 2 × 3 × 5 ×
· · · × Prime[d] is the product of the �rst primes until some rank d, and then subtract α from h until h
becomes prime. Denote by φ Euler's totient function and assume that this algorithm randomly samples
u-bit numbers congruent to 1 mod α until it �nds a prime. There are about 2u

uφ(α) u-bit primes congruent

to 1 mod α, and there are 2u

α u-bit numbers congruent to 1 mod α. Thus, the algorithm is expected

to do about 2u

α /
2u

uφ(α) = φ(α)
α u primality tests before �nding a prime, which improves over the u tests

required by the naïve algorithm. The main drawback of this algorithm is that, even if Hash is uniformly
random, HashPrime isn't. This slightly increases HashPrime's collision-rate and u has to be increased
subsequently.

5.2 Optimizations

Adapting pk. Taking the pk's to be utk-bit primes is ine�cient, because large prime generation is slow. In
this section, we study alternative pk choices yielding constant factor improvements.

Let Prime[i] denote the i-th prime, with Prime[1] = 2. Besides conditions on size, the only property
required from a pk is to be co-prime with the {hi, h′i}. We can hence consider the following variants, all
which will imply a few conditions on {hi, h′i} to ensure this co-primality:

� Variant 1. pk =
∏rk+1−1
j=rk

Prime[j] where the bounds rk are chosen to ensure that each pk has the proper
size. Generating such smooth numbers is much faster than generating large primes.

� Variant 2. pk = Prime[k]rk where the exponents rk are chosen to ensure that each pk has the proper size.
This is faster than Variant 1 and requires that min{hi, h′i} > max(Prime[k]).

� Variant 3. Pk = 2utk . In this case Ck =
∏n
i=1 hi mod Pk, c1 = C1 and ck = (Ck −Ck−1)/Pk−1. i.e., ck is

the slice of bits utk−1, . . . , utk−1 of Ck denoted ck = Ck[utk−1, . . . , utk]. Variant 3 is modular-reduction-
free and CRT-free: Ck is just the binary concatenation of ck and Ck−1. Computations are thus much
faster. Algorithm 1 (justi�ed hereafter) computes ck e�ciently. Note that we only need to store Dk,i and
Dk+1,i during round k (for all i). So space overhead is O(nu).

Let Xi =
∏i
j=1 hj (with X0 = 1), Xi,k = Xi[utk−1 · · ·utk] and let Di,k be the u most signi�cant bits of

the product of Yi,k = Xi[0 · · ·utk] and hi, i.e., Di,k = (Yi,k × hi)[utk · · ·u(tk + 1)] (with Di,0 = 0 and
D0,k = 0). Since Xi+1 = Xi × hi+1, we have, for k ≥ 0, i ≥ 0:

Di+1,k+1 × 2utk+1 + Yi+1,k+1 = Yi,k+1 × hi+1

= (Xi,k+1 × 2utk + Yi,k)× hi+1

= Xi,k+1 × 2utk × hi+1 + Yi,k × hi+1

= Xi,k+1 × hi+1 × 2utk + (Di,k × 2utk + · · ·).

Therefore, if we only consider bits [utk · · ·u(tk+1 + 1)], for k ≥ 1, i ≥ 0:

Di+1,k+1 × 2u(tk+1−tk) +Xi+1,k+1 = Xi,k+1 × hi+1 +Di,k.

Since ck = Xn,k, Algorithm 1 is correct.

Algorithmic Optimizations using Product Trees. The non-overwhelming (but nonetheless important)
complexities of the computations of (c, c′) and of the factorizations can be even reduced to Õ(ntkµ(utk)) and

Õ(nTkµ(uTk)) as explained in Appendix B.

7

Algorithm 1 Computation of ck for pk = 2utk

Require: k, the set hi, (Dk,i) as explained in Appendix B
Ensure: ck+1 =

∏n
i=1 hi mod pk+1, (Dk+1) as explained in Appendix B

1: if k = 0 then X ← 1 else X ← 0
2: for i = 1, . . . , n do
3: Z ← X × hi
4: Di,k+1 ← Z[u(tk+1 − tk) · · ·u(tk+1 − tk + 1)]
5: X ← Z[0 · · ·u(tk+1 − tk)]
6: ck+1 ← X

Table 1. Protocol Complexity Synopsis

Entity Computation Complexity in Õ of Optimization

Basic algo.a Opt. algo.b

Both computation of hi and h′i nu2 · µ(u) φ(α)
α
nu2 · µ(u) fast hashing

Round k

Both compute redundancies ck and c′k n · µ(utk) n
tk
· µ(utk) prod. trees

Neil compute sk = c′k/ck
c or Sk = C′k/Ck

d µ(uTk) µ(uTk)
Neil compute Sk from Sk−1 and sk (CRT)c µ(uTk) none pk = 2utk

Neil �nd ak, bk such that Sk = ak/bk mod Pk
e µ(uTk) µ(uTk)

Neil factor ak n · µ(uTk) n
Tk
· µ(uTk) prod. trees

Last round

Oscar factor bk n · µ(utk) n
tk
· µ(utk) prod. trees

global complexity

. . . with naïve mult. nu2T 3/t+ nu4 nu2T + φ(α)
α
nu4 doublingf

. . . with FFT nuT + nu3 nu+ φ(α)
α
nu3 doublingf

a using the basic algorithms of Section 5.1, and taking t1 = t2 = · · · = t
b using all the optimizations of Sections 5.1, 5.2 (pk = 2utk also yields substantial constant factor accelerations not
shown in this table), the product trees and the doubling as described in the full version of this paper

c only for prime pi (or variant 1 or 2 in Section 5.2)
d only for pi = 2uti
e using advanced algorithms in [11,15] � naïve extended GCD gives (uTi)2
f in addition to the previous optimizations

Doubling. As seen at the end of Section 2.3, using the exponential t variant (i.e., doubling tk at each
iteration) doubles transmission (at most) with respect to the �xed t option, but drastically reduces the
amount of computation to perform.

6 Related Work on Set Reconciliation

This section compares D&F with the set reconciliation algorithm of Minsky et alii [10] (hereafter MTZ). We
do not analyze here reconciliation algorithms achieving better computational performances at the cost of
supra-linear transmission complexity (e.g., [6] or [4]).

Unlike MTZ which is based on polynomials, D&F is based on integers. D&F and MTZ both achieve an
optimal (i.e., linear) transmission complexity, but D&F only deals with �xed-size primes, whereas MTZ deals
with any �xed-size bit strings.

8

MTZ is mostly designed for �incremental� settings where H and H′ are often updated5 and re-
synchronized. This di�ers from our setting and there seems to be no straightforward manner to extend
D&F in that fashion while maintaining a low time complexity. For that reason, our analysis of MTZ's
time complexity will take into account the cost of computing redundancies, as we did for D&F. The main
di�erences between MTZ and D&F are the following:
� MTZ synchronizes monic polynomials X −hi and X −h′i over a �eld Fq (where q is a (u+1)-bit prime),

instead of u-bit primes {hi, h′i};
� In MTZ, pk are square-free, mutually co-prime polynomials which are also co-prime with all X − hi and
X − h′i. In D&F this role is played by mutually co-prime integers that are also co-prime with respect to
the {hi, h′i} (for all the variants in Section 5.2 except the last).

Indeed, in the basic one-round version:
� If we write pk = (X − ρ1) · · · (X − ρt), then c =

∏n
i=1(X − hi) mod pk and χH =

∏n
i=1(X − hi),

χH(ρj) = c(ρj). Thus, thanks to Lagrange interpolation, sending evaluations of χH in t points ρ1, . . . , ρj ,
as Oscar does in [10], is equivalent to sending c.

� The rational function interpolation of [10] can also be seen as an RNR version of Theorem 1 for
polynomials: we try to recover two polynomials a, b (with a correct bound on degrees) such that
ab−1 mod p = c′c−1 mod p. Note that this implies that the Gaussian elimination of cost O(t3µ(u)) (used
for this step by MTZ) can be replaced by an extended GCD computation that costs only O(t2µ(u)) (and
Õ(µ(ut)) using the advanced algorithms of [11,15]);
We will compare the computational complexities of MTZ and D&F without taking into account the cost of

hashing the �les that has to be incurred by both algorithms. MTZ's time complexity is thus O(nu2T +u2T 3)
when doubling is used, which is not as good as our Õ(nu) with FFT, and also not as good as our non-FFT
complexity Õ(nu2T) when n � T 2. However, our better complexity bounds stem from optimizations that
are all equally applicable to MTZ (except, of course, the optimizations concerning the choice of pk).

An improved way to perform set reconciliation is presented in [9]. This algorithm uses MTZ as a black
box and requires at least about 24e ∼= 65.23 times more bandwidth (with a bipartition) but substantially im-
proves MTZ's computational complexity. However, this construction is generic with respect to the underlying
reconciliation algorithm and can hence be applied to D&F to yield identical complexity gains.

7 From File Reconciliation to File Synchronization

In Section 4, we reconciled �le sets by looking only at their contents. However, in practice, users synchronize
�le sets, and not just hierarchies. In other words, we are not just interested in �le contents but also in their
metadata. The most important metadata is the �le's path (i.e., its name and location in the �lesystem),
though other kinds of metadata exist (e.g., modi�cation time, owner, permissions). In many cases, �le
metadata change while the �le contents do not: e.g., �les can be moved to a di�erent directory. When
performing reconciliation, we must be aware of this fact, and re�ect �le moves without re-transferring the
moved �les' contents. (This is an important improvement over popular synchronization tools such as rsync).

We will call this task �le synchronization. This section achieves �le synchronization using D&F as a
black-box. The described algorithms are hence generic and can leverage any reconciliation algorithm.

7.1 General Principle

To perform �le synchronization, Oscar and Neil will hash the contents of each of their �les using a collision-
resistant hash function Hash: we will call this the �le's content hash and denote it by Ci or C

′
i for the i-th �le

in F or F ′. Likewise, we denote by Mi or M
′
i the �les' metadata. We let Fi or F

′
i denote the pair (Ci,Mi)

or (C ′i,M
′
i). Oscar and Neil will reconciliate those sets as in Section 4.

Once the reconciliation has completed, Oscar is aware of the metadata and the content hash of all of
Neil's �les that do not exist in his disk with the same content and metadata (we will call these the missing

�les).

5 e.g., by adding or removing a few values to H or H′.

9

Oscar now looks at the list of the missing �les' content hashes. For some of these hashes, Oscar may
already have a �le with the same content hash, but only with a wrong metadata. For others, Oscar may
not have any �le with the same content hash. In the �rst case, Oscar can recreate Neil's �le by altering
the metadata, without retransferring the �le's contents. This is presented in Section 7.2. In the second case,
Oscar needs to retrieve the full �le contents from Neil. This is presented in Section 7.3.

7.2 Moving Existing Files

Adjusting the metadata of existing �les is trivial, except for �le location which is the focus of this section:
Oscar needs to perform a sequence of �le moves on his copy to reproduce the structure of Neil's copy. Sadly,
it is not straightforward to apply the moves, because, if we take a �le to move, its destination might be
blocked, either because a �le already exists (we want to move a to b, but b already exists), or because a
folder cannot be created (we want to move a to b/c, but b already exists as a �le and not as a folder). Note
that for a move operation a→ b, there is at most one �le blocking the location b: we will call it the blocker.

If the blocker is absent on Neil, then we can just delete the blocker. However, if a blocker exists and is a
�le which appears in Neil with di�erent metadata, then we might need to move this blocker somewhere else
before we apply the move we are interested in. Moving the blocker might be impossible because of another
blocker that we need to keep, and so on, possibly ending in a cycle (e.g., move a to b and b to a) in which
case we need to use an intermediate temporary location.

How should we perform the moves? A simple way would be to move each �le to a unique temporary
location and then move them to their �nal location: however, this performs many unnecessary moves and
could lead to problems if the process is interrupted. We can do something more clever by performing a
decomposition into Strongly Connected Components (SCC) of the move graph (with one vertex per �le and
one edge per move operation going from to the �le to its blocker or to its destination if no blocker exists).

Once the SCC decomposition is known, moves can be applied by performing them in each SCC in a
bottom-up fashion, an SCC's moves being solved either trivially (for single �les) or using one intermediate
location (for cycles).

The detailed algorithm is implemented as two mutually recursive functions and presented as Algorithm
2.

7.3 Transferring Missing Files

Once all moves have been applied, Oscar's hierarchy contains all of its �les which also exist on Neil. These
have been put at the correct location and have the right metadata. The only thing that remains is to transfer
the contents of Neil's �les that do not exist in Oscar's hierarchy and create those �les at the right position.
To do so, we can just use rsync to synchronize explicitly the correct �les on Neil to the matching locations
in Oscar's hierarchy, using the fact that Oscar is now aware of all of Neil's �les and their locations. In so
doing, we have to ensure that multiple �les on Neil that have the same content are only transferred once and
then copied to all their locations without being retransferred.

It is interesting to notice that if a �le's contents has been changed slightly on Neil but its location hasn't
changed, then in most cases the rsync invocation will reuse the existing copy of the �le on Oscar when
transferring this �le from Neil to Oscar. Because rsync uses rolling checksums to retransfer only relevant �le
parts, this may actually reduce the transmission complexity. If a �le's content is slightly changed and the
�le is moved, however, then this gain will not occur.

8 Implementation

We implemented D&F, extended it to perform �le synchronization, and benchmarked it against rsync. The
implementation is called btrsync, its source code is available from [1]. btrsync was written in Python (using
GMP to perform the number theoretic operations), and uses a bash script (invoking SSH) to create a secure
communication channel between Oscar and Neil.

10

Algorithm 2 Perform moves

Require: M is a dictionary where M[f] denotes the intended destinations of f

1: C ← [] . Stores the color of a �le (initially �not_done�)
2: T ← [] . Stores the temporary location assigned for a �le
3: function unblock_copy(f, d)
4: if d is blocked by some b then
5: if b is not in M's keys then delete(b) . We don't need b
6: else resolve(b) . Take care of b and make it go away

7: if T [f] was set then f ← T [f]

8: copy(f , d)

9: function resolve(f)
10: if C[f] = done then
11: return . Already managed by another in-edge

12: if C[f] = doing then
13: if T [f] was not set then
14: T [f] ← mktemp() . Use a new temporary location
15: move(f , T [f])

16: return . We found a loop, moved f out of the way

17: C[f] ← doing
18: for d ∈M[f] with d 6= f do
19: unblock_copy(f , d) . Perform all the moves

20: if f /∈M[f] and T [f] was not set then delete(f)

21: if T [f] was set then delete(T [f])

22: C[f] ← done

23: for f in M's keys do
24: resolve(f)

11

Table 2. Test Directories

Directory Description

syn a directory containing 1000 very small �les
syn_shuf syn changed by 10 deletions, renames and modi�cations
source a snapshot of btrsync's own source tree
source_moved source with one big folder (a few megabits) renamed
ff-13.0 the source archive of Mozilla Firefox 13.0
ff-13.0.1 the source archive of Mozilla Firefox 13.0.1
empty an empty folder

8.1 Implementation Choices

Our implementation does not take into account all the possible optimizations described in Section 5: it
implements doubling (Section 5.2) and uses powers of small primes for the pk (variant 2 of Section 5.2),
but does not implement product trees (Section 5.2) nor does it use the prime hashing scheme (Section 5.1).
Besides, we did not implement the proposed improvement in transmission complexity for �le reconciliation
(Section 4.2).

As for �le synchronization (Section 7), the only metadata managed by btrsync is the �le's path (name
and location). Other metadata types (modi�cation date, owner, permissions) are not implemented, although
it would be very easy to do so. An optimization implemented by btrsync over the move resolution algorithm
described in Section 7.2 is to avoid doing a copy of a �le F and then removing F : the implementation replaces
such operations by moves, which are faster than copies on most �le systems because the OS does not need
to copy the actual �le contents.

8.2 Experimental Comparison to rsync

We compared rsync6 and our implementation btrsync. The directories used for the benchmark are described
in Table 2. Experiments were performed without any network transfer, by synchronizing two folders on the
same host. Hence, time measurements mostly represent the synchronization's CPU cost.

Results are given in Table 3. In general, btrsync spent more time than rsync on computation (especially
when the number of �les is large, which is typically seen in the experiments involving syn). Transmission
results, however, are favorable to btrsync.

In the trivial experiments where either Oscar or Neil have no data at all, rsync outperforms btrsync.
This is especially visible when Neil has no data: rsync, unlike btrsync, immediately notices that there is
nothing to transfer.

In non-trivial tasks, however, btrsync outperforms rsync. This is the case of the syn datasets, where
btrsync does not have to transfer information about all unmodi�ed �les, and even more so in the case where
there are no modi�cations at all. For Firefox source code datasets, btrsync saves a very small amount of
bandwidth, presumably because of unmodi�ed �les. For the btrsync source code dataset, we notice that
btrsync, unlike rsync, was able to detect the move and avoid retransferring the moved folder.

9 Conclusion and Further Improvements

This paper introduced the new number-theoretic set reconciliation protocol called Divide and Factor (D&F).
We analyzed D&F's transmission and time complexities and describing several optimizations and parameter

6 rsync version 3.0.9, used both as a competitor to benchmark against and as an underlying call in our own code.
rsync was passed the following options: --delete to delete Oscar's �les that were deleted on Neil like btrsync

does, -I to disable heuristics based on �le modi�cation times that btrsync does not use, --chmod="a=rx,u+w" to
make it unnecessary to transfer �le permission that btrsync does not transfer (though verbose logging suggest
that rsync wastes a few bytes per �le because it transmits them anyway), and -v to count the number of sent and
received bytes.

12

Table 3. Experimental results. Synchronization is performed from Neil to Oscar. RX and TX denote the quantity of
received and sent bytes, rs and bt denote rsync and btrsync, and δ� = TX� + RX�. δrs − δbt and δbt/δrs express the
absolute and the relative di�erences in transmission between rsync and btrsync. The last two columns show timing
results on an Intel Core i3-2310M CPU clocked at 2.10 Ghz.

Entities and Datasets Transmission (Bytes) Time (s)

Neil's F ′ Oscar's F TXrs RXrs TXbt RXbt δbt − δrs δbt
δrs

trs tbt

source empty 778k 2k 780k 10k 10k 1.0 0.1 0.7
empty source 24 12 12k 6k 18k 496.6 0.0 0.4
empty empty 24 12 19 30 13 1.4 0.0 0.3
syn syn_shuf 55k 19k 7k 3k -63k 0.1 0.5 0.8
syn_shuf syn 54k 19k 7k 3k -63k 0.1 0.2 0.8
syn syn 55k 19k 327 30 -73k 0.0 0.5 0.7
ff-13.0.1 ff-13.0 41M 1k 40M 3k -1M 1.0 1.6 8.1
source_moved source 778k 1k 3k 2k -775k 0.0 0.1 0.4

choices. We have shown how D&F can be applied to �le reconciliation using hashing, and to solve the
practical �le synchronization problem. D&F was benchmarked against rsync. The comparison reveals that
D&F transmits less data than rsync but performs more computation.

Many interesting problems are left open. These problems are both theoretical and practical. A �rst
theoretical challenge consists in eliminating the costly hashing into primes. e.g., if the pk are powers of
two then hashing into odd integers might su�ce. This would make reconciliation harder because multiple
factorizations of a and b as products of hi and h

′
i could exist while only one of them would be the correct one.

A careful probabilistic analysis would be required to determine the probability of multiple factorizations and
bound the cost of recovering the correct factorization. This phenomenon is tightly linked to the cryptographic
notion of collision-division [5]. As for other aspects of our construction, many bounds on transmission and
computational complexities could be re�ned and improved.

Other theoretical questions are left open by our study of move resolution: The algorithm that we propose
is suboptimal because there should never be any need to use two di�erent temporary �le locations: one
location is always su�cient to break cycles, and a more careful exploration of the move graph could proceed
in that fashion. It is also interesting to �nd out if there is a way to perform a minimal number of temporary
moves (or if this problem is NP-complete), or if we can reduce the total number of moves by moving folders
in addition to �les.

From a practical standpoint, our btrsync implementation could be improved in several ways. First, the
numerous possible improvements described in the paper could be implemented and benchmarked. Then,
heuristics could be added to work around the situations in which btrsync is outperformed by rsync, such
as the ones identi�ed during our experimental comparison of the two programs. For instance, whenever the
product of Neil's hashes becomes smaller than Pk, then Neil should send its hashes immediately to Oscar and
terminate the protocol: this would avoid transmitting a lot of data in situations where Neil's copy is empty
or very small. Last but not least, the development of our btrsync prototype could be continued to make it
suitable for real-world users, including proper management of all metadata, using the �le modi�cation time
as a heuristic to detect changes, and caching of �le content hashes to avoid recomputing them.

A possible additional feature that could be added to btrsync is to detect �les that have been both moved
and altered slightly. A related improvement would be to use a variant of rsync's algorithm to transfer Neil's
new �les to Oscar by considering simultaneously several related �les on Oscar's copy and computing rolling
checksums.

Finally, we could study how additional information could be used to speed up set reconciliation. An
interesting possibility is to give to Neil and Oscar, in addition to their �les, a value for each �le indicating
the probability that the other party does not have this �le. To what extent could this prior knowledge be
exploited to perform reconciliation more e�ciently?

13

Acknowledgment. The authors acknowledge Guillain Potron for his early involvement in this research
work.

References

1. https://github.com/RobinMorisset/Btrsync

2. Abdalla, M., Ben Hamouda, F., Pointcheval, D., Tighter Reductions for Forward-Secure Signature Schemes,
Accepted to PKC 2013 to appear in LNCS, Springer, 013. Full version available from the authors' webpage.

3. Burnikel, C., Ziegler, J., Stadtwald, I., Fast Recursive Division, Tech. Rep., MPI-I-98-1-022, MPI Informatik
Saarbrucken, 1998.

4. Byers, J., Considine, J., Mitzenmacher, M., Rost, S., Informed Content Delivery Across Adaptive Overlay Net-

works, ACM SIGCOMM Computer Communication Review, vol. 32(4), pp. 47�60, 2002.
5. Coron, J.-S., Naccache, D., Security Analysis of The Gennaro-Halevi-Rabin Signature Scheme, EUROCRYPT'00,

LNCS vol. 1807, Springer, pp. 91�101, 2000.
6. Eppstein, D., Goodrich, M., Uyeda, F., Varghese, G.,What's the Di�erence?: E�cient Set Reconciliation Without

Prior Context, ACM SIGCOMM Computer Communication Review, vol. 41, pp. 218�229. 2011.
7. Fouque, P.A., Stern, J., Wackers, J.G., Cryptocomputing With Rationals, Financial Cryptography'02. LNCS vol.

2357, Springer, pp. 136�146, 2002.
8. Hohenberger, S., Waters, B., Short and Stateless Signatures From the RSA Assumption, CRYPTO'09. LNCS

vol. 5677, Springer, pp. 654�670, 2009.
9. Minsky, Y., Trachtenberg, A., Practical Set Reconciliation, Tech. Rep., Department of Electrical and Computer

Engineering, Boston University, Technical Report BU-ECE-2002-01, 2002, a full version can be downloaded from
http://ipsit.bu.edu/documents/BUTR2002-01.ps

10. Minsky, Y., Trachtenberg, A., Zippel, R., Set Reconciliation With Nearly Optimal Communication Complexity,
IEEE Transactions on Information Theory, vol. 49(9), pp. 2213�2218, 2003.

11. Pan, V., Wang, X., On Rational Number Reconstruction and Approximation SIAM Journal on Computing vol.
33(2), pp. 502�503, 2004.

12. Schönhage, A., Strassen, V., Schnelle Multiplikation groÿer Zahlen. Computing vol. 7(3), pp. 281�292, 1971.
13. Tridgell, A., E�cient Algorithms for Sorting and Synchronization, Ph.D. thesis, The Australian National Uni-

versity, 1999.
14. Vallée, B., Gauss' Algorithm Revisited. Journal of Algorithms vol. 12(4), pp. 556�572, 1991.
15. Wang, X., Pan, V., Acceleration of Euclidean Algorithm and Rational Number Reconstruction, SIAM Journal

on Computing vol. 32(2), pp. 548�556, 2003.

A The File Laundry: Reducing u

Naïve Analysis. Let us now bound the number of iterations to perform, in a naïve manner. We slightly
change notations and write:

F ∪ F ′ = {F1, . . . , Fη}.

We notice that, as soon as a �le Fi or F
′
i in F∆F ′ does not collide with another �le in one iteration of

D&F, then this di�erence between F and F ′ will be reconciled. In this naïve analysis, we do not use the
fact that such �les are removed from one iteration to the next, and we just compute the probability that a
�le keeps colliding for λ iterations. We will thus obtain an upper bound on the probability that at least one
di�erence between F and F ′ has not been detected after λ iterations (i.e., at least one false positive survives
λ iterations).

Because there are are about 2u

u u-bit prime numbers, we write u′ = u − ln(u) and see HashPrime as a

random function from {0, 1}∗ to {0, . . . , 2u′ − 1}. Let Xi be the random variable:

Xi =

{
1 if �le Fi collides with another �le.
0 otherwise.

14

https://github.com/RobinMorisset/Btrsync
http://ipsit.bu.edu/documents/BUTR2002-01.ps

Clearly, we have Pr [Xi = 1] ≤ η−1
2u′

. Using this bound and the linearity of expectation, the average
number of colliding �les is hence:

E

[
η∑
i=1

Xi

]
≤

η∑
i=1

η − 1

2u′ =
η(η − 1)

2u′ .

For instance, for η = 106 �les and 42-bit digests, the expected number of colliding �les is less than 4.
Assume that the diversi�ed ~`(F)'s are random and independent. We will show that the probability that

a stubborn �le continues to collide decreases exponentially with the number of iterations λ. Assume that η
remains invariant between iterations and de�ne the following random variables:

X`
i =

{
1 if �le Fi collides during iteration `.
0 otherwise.

Yi =
∧λ
`=1X

`
i =

{
1 if �le Fi collides during all the λ �rst iterations.
0 otherwise.

By independence, we have:

Pr [Yi = 1] =

λ∏
`=1

Pr
[
X`
i = 1

]
≤
(
η − 1

2u′

)λ
Therefore the average number of colliding �les is:

E

[
η∑
i=1

Yi

]
≤

η∑
i=1

(
η − 1

2u′

)λ
= η

(
η − 1

2u′

)λ
And the probability that at least one false positive survives k rounds is:

ελ ≤ η
(
η − 1

2u′

)λ
For the previously considered instance of η = 106 and u = 42, we get ε2 ≤ 10−3%, and with probability

more than 1− ε2, two iterations of D&F will su�ce.

How to Select u? For the sake of simplicity, we consider t1 = t2 = · · · = t. For a �xed λ, ε′λ decreases
as u′ grows. For a �xed u′, ε′λ also decreases as λ grows. Transmission, however, grows with both u′ (bigger
digests) and k (more iterations). We write for the sake of clarity: ε′λ = ε′λ,u′,η.

Fix η. Note that the number of bits transmitted per iteration (' 3ut), is proportional to u. This yields
an expected transmission complexity bound Tu,η such that:

Tu,η ∝ u
∞∑
λ=1

λ · ε′λ,u′,η =
u′η(η − 1)

2u′

∞∑
λ=1

(
η − 1

2u′

)λ−1
=

uη(η − 1)

2u′ − η + 1
=

uη (η − 1) 8u(
2u − 4u + (η − 2)

2
)2

Dropping the proportionality factor η(η− 1) and approximating η− 1 ≈ η, we can optimize the function:

φη(u
′) =

u′

2u′ − η

φ106(u
′) admits an optimum for u′ ≈ 15.

15

Possible Re�nements. The previous analyses are incomplete because of the following approximations:
� We used a �xed u in all rounds. Nothing forbids using a di�erent u` at each iteration, or even �ne-tuning

the u`'s adaptively as a function of the laundry's e�ect on the progressively reconciliated multisets..
� Our analysis treats t as a constant, but large t values increase p and hence the number of potential �les

detected as di�erent per iteration - an e�ect disregarded supra.
A di�erent approach is to optimize t and u experimentally, e.g., using the open source D&F program

btrsync developed by the authors (cf. Section 8).

B Algorithmic Optimizations using Product Trees

For the sake of simplicity, we suppose there is only one round, write p = p1, t = t1 = T1, and assume that
t is a power of two dividing n. We write t = 2τ . For simplicity, we also assume that p is prime, though the
algorithm can be easily adapted to the other variants described in Section 5.2.

The idea is the following: group hi's by subsets of t elements and compute the product of each such
subset in N (i.e., without modulo). For j ∈ {1, . . . , n/t}, we de�ne:

Hj =

jt∏
i=(j−1)t+1

hi.

Each Hj can be computed in Õ(µ(ut)) using the standard product tree method described in Algorithm 3.

(for j = 1). Thus, all these n
t products can be computed in Õ(nt µ(ut)). We can then compute c by multiplying

the Hj modulo p, which costs Õ(nt µ(ut)).

Algorithm 3 Product tree algorithm (assuming j = 1 for simplicity).

Require: the set hi
Ensure: π = π1 =

∏t
i=1 hi, and πi for i ∈ {1, . . . , 2t− 1}

1: π ← array of size t
2: function prodTree(i, start, end)
3: if start = end then
4: return 1
5: else if start + 1 = end then
6: return hstart+1

7: else
8: mid← b start+end

2
c

9: π2i ←prodTree(2i, start, mid)
10: π2i+1 ←prodTree(2i+ 1, mid, end)
11: return π2i × π2i+1

12: π1 ←prodTree(1, 0, t)

The same technique applies to factorization. We explain the process with a, though the same process
applies ne variatur to b. After computing the tree product, we can compute the residues of a modulo H1.
Then we can compute the residues of a mod H1 modulo the two children π2 and π3 of H1 = π1 in the product
tree (depicted in Figure 3), and so on. Intuitively, we descend the product tree doing modulo reduction. At
the end (i.e., as we reach the leaves), we obtain the residues of a modulo each of the hi (i ∈ {1, . . . , t}). This
is described in Algorithm 3. We can use the same method for the tree product associated to any Hj , and
the residues of a modulo each of the hi (i ∈ {(j − 1)t+1, . . . , jt}) for any j, i.e., a modulo each of the hi for
any i. Complexity is Õ(µ(ut)) for each j, which amounts to a total complexity of Õ(nt µ(ut)).

16

π
=
π
1
=

t ∏ i=
1

h
i

π
2
=

t/
2 ∏ i=
1

h
i

π
4
=

t/
4 ∏ i=
1

h
i

. . .

πt = h1

πt+1 = h2

. . .

π
5
=

2
t/

4 ∏
i=
t/

4
+
1

h
i

. . .
. . .

π
3
=

2
t/

2 ∏
i=
t/

2
+
1

h
i

π
6
=

3
t/

4 ∏
i=
t/

2
+
1

h
i

. . .
. . .

π
7
=

4
t/

4 ∏
i=

3
t/

4
+
1

h
i

. . .
. . .

π2t−2 = ht−1

π2t−1 = ht

2
τ
×
µ
(
u
t

2
τ
)
≤
µ
(u
t)

. . .

4
×
µ
(
u
t 4
)
≤
µ
(u
t)

2
×
µ
(
u
t 2
)
≤
µ
(u
t)

µ
(u
t)

τ
×
µ
(u
t)

=
Õ
(µ

(u
t)
)

++++ ≤

Fig. 3. Product tree (assuming j = 1 for simplicity).

17

a
m
o
d
π
1

a
m
o
d
π
2

a
m
o
d
π
3

. . .

a mod h1

a mod h2

. . .

a
m
o
d
π
5

. . .
. . .

a
m
o
d
π
3

a
m
o
d
π
6

. . .
. . .

a
m
o
d
π
7

. . .
. . .

a mod ht−1

a mod ht

2
τ
×
O
(µ

(
u
t

2
τ
))

=
O
(µ

(u
t)
)

. . .

4
×
O
(µ

(
u
t 4
))

=
O
(µ

(u
t)
)

2
×
O
(µ

(
u
t 2
))

=
O
(µ

(u
t)
)

1
×
O
(µ

(u
t)
)

∑ τ i=
1
2
i
×
O
(µ

(
u
t

2
i
))

=
τ
O
(µ

(u
t)
)
=
Õ
(µ

(u
t)
)

++++ =

Fig. 4. Modular reduction from product tree (assuming j = 1 for simplicity).

18

Algorithm 4 Division using a product tree

Require: a ∈ N, π the product tree of Algorithm 3
Ensure: A[i] = a mod πi for i ∈ {1, . . . , 2t− 1}
1: A← array of size t
2: function modTree(i)
3: if i < 2t then
4: A[i]← A[bi/2c] mod πi
5: modTree(2i)
6: modTree(2i+ 1)

7: A[1]← a mod π1

8: modTree(2)
9: modTree(3)

19

