
Can a Program Reverse-Engineer Itself?

Antoine Amarilli1, David Naccache1, Pablo Rauzy1, and Emil Simion2

1 École normale supérieure, Département d'informatique
45, rue d'Ulm, f-75230, Paris Cedex 05, France.

{surname.name}@ens.fr
2 Universitatea din Bucure³ti

Faculty of Mathematics and Computer Science
Academiei 14-th, S1, C.P. 010014, Bucharest, Romania

esimion@fmi.unibuc.ro

Abstract. Shape-memory alloys are metal pieces that "remember" their
original cold-forged shapes and return to the pre-deformed shape after
heating. In this work we construct a software analogous of shape-memory
alloys: programs whose code resists obfuscation. We show how to pour
arbitrary functions into protective envelops that allow recovering the
functions' exact initial code after obfuscation. We explicit the theoretical
foundations of our method and provide a concrete implementation in
Scheme.

1 Introduction

Biological forms of life have a major advantage over machines: the capacity to
heal. [4] de�nes self-healing as "the property that enables a system to perceive

that it is not operating correctly and, without human intervention, make the

necessary adjustments to restore itself to normalcy". In 3.8 billions of years,
natural selection managed to develop outstanding self-healing mechanisms. Liv-
ing organisms embed biological information in their dnas. This information and
the "defective automaton" represented by a damaged organism manage to heal
when damage is not too extreme.

Over the last 50 years considerable e�orts were invested in the design of error-
correcting codes. Error-correcting codes make it possible to "heal" damaged data
with the help of an error-free external decoder. Informally, self-healing systems
manage to �x errors even when the decoder's algorithm is somewhat damaged.

In this work we study the design of executable code that resists obfuscation.
Our goal is to construct programs that recover their exact initial code after
obfuscation. In a way, our concept is analogous to shape-memory alloys that
"remember" their original cold-forged shapes and return to the pre-deformed
shape by heating.



Throughout this paper we will follow the �code is data� notational principle
and represent functions F by the s-expression which is used to de�ne them3.

2 Real-Life Obfuscation

Informally speaking, an obfuscator O is a function that takes any function F as
an argument and outputs a function O(F) with an equivalent behavior4 i.e.:

∀x, (O(F))(x) = F(x)

Denoting by F the set of all functions which can be represented by an s-
expression, real-life obfuscators usually attempt to transform F ∈ F into an
O(F) ∈ F which is harder to reverse-engineer. Bibliography about the usefulness
of obfuscators abounds. We refer the reader to the introductory section of [1] for
further reference.

In 2009, Barak et al. [1] exhibited a family of unobfuscatable functions F.
Barak et al. formalized unobfuscatability by requiring that there exists a prop-
erty π : F → {true, false} such that given any program that computes a
function F ∈ F, the value π(F) can be e�ciently computed, while given oracle
access to a randomly selected F ∈ F, no e�cient algorithm can compute π(F)
signi�cantly better than random guessing.

We start by observing that given any "real-life" (i.e. commercial) obfuscator,
the construction of inherently unobfuscatable code is easy: A Quine (named
after the logician Willard Van Orman Quine) is an unobfuscatable program5

that prints its own code [2,5].

Writing Quines is a somewhat tricky programming exercise yielding Lisp, C
or natural language examples such as:

((lambda (x) (list x (list (quote quote) x)))

(quote (lambda (x) (list x (list (quote quote) x)))))

char *f="char*f=%c%s%c;main(){printf(f,34,f,34,10);}%c";

main() {printf(f,34,f,34,10);}

Copy the next sentence twice. Copy the next sentence twice.

A Quine Q is impossible to obfuscate because either the evaluation of O(Q)
yields Q and hence reveals the original pre-obfuscation code (thereby making

3 i.e. Whenever we write that a function is taken as argument or returned by another
function, we really mean that s-expressions are taken and returned. Note that instead
of s-expressions, one could use λ-terms or any form of source code.

4 We write F(x) =⊥ if F(x) does not terminate.
5 Any Turing-complete formal system admits Quines [3].



obfuscation impossible) or it does not � in which case O is not a valid obfuscator
because then we would have that

(O(Q))(x) 6= Q(x)

This gives hope to construct in a somewhat generic manner unobfuscatable
versions of arbitrary functions. Namely, if we could design a "Genetically Mod-
i�ed Organism" hybridizing a Quine Q and an arbitrary function F , then one
may reasonably hope that the resulting version of F will inherit the obfuscation-
resistance features of the Quine while still performing the calculations that F
encodes. This is the question dealt with by the present paper.

3 The Construction

Consider the function W such that for all functions F ∈ F and all inputs x :

(W(F))(u, x) =

 F if u = true

F(x) if u = false

Given our de�nition of obfuscation,W(f) cannot be obfuscated in any mean-
ingful way, simply because all obfuscators O, must still ensure that

(O(W(F)))(true, x) = F

Let's see what happens if we relax the setting and allow O to obfuscate
the result of W (F)(true, x). In this case, O could proceed by retrieving F =
(W(F))(true, x), build an O(F) such that (O(F))(x) = F(x) for all x, and then
build an O(W(F)) such that:

(O(W(F))) (u, x) =

O(F) if u = true

F(x) if u = false

to prevent us from recovering the original F . However, we would still like O
to return a function which is equivalent to the original F .

Let us de�ne formally what we mean by equivalent in the previous sentence:
We write

F =0 F ′

if F and F ′ are the exact same s-expressions (i.e. the same executable code).

We write F =1 F ′ if F and F ′ have an equivalent behavior i.e.

∀x,F(x) = F ′(x)

For all n > 1, we de�ne



F =n F ′ ⇔ ∀x,F(x) =n−1 F ′(x)

with ⊥=n x i� x =0⊥.

We extend the notation to arbitrary values (not necessarily programs):

x =n y ⇔ x = y

and to tuples:

(xi)i =n (yi)i ⇔ xi =n yi for all i

Now, instead of requiring that O(F) =1 F for all x, we �x some constant n
and require that O(F) =n F .

Is it possible to build unobfuscatable programs under the above de�nition?

While intricate, the answer turns out to be positive, for any n.

To do so, we de�ne the function C such that ∀F ∈ F and for all inputs x:

(C(F))(u, x) =

C(F) if u = true

F(x) if u = false

Note that this requires C(F) to reference its own source code, which can
be done by a Quine-like construction similar to the one used in Pastis [6] and
which is justi�ed theoretically by Kleene's second recursion theorem.

We claim that C(F) cannot be obfuscated in a way respecting the above
constraints, no matter one's choice of n.

Indeed, given an obfuscated version O(C(F)) =n C(F), we can invoke

(O(C(F)))(true, x)

and obtain a function which is =n−1 C(F). We execute this "peeling process"
n times and end up with a function which is =0 C(F), i.e. the original C(F),
from which F can be retrieved. We denote by Dn a function implementing this
"peeling process".

In summary ∀n, there exists two functions C and Dn such that ∀F ∈ F, for
any obfuscator O verifying O(F ′) =n F ′ for all F ′, we have:

(O(C(F)))(false, x) =n F(x) and Dn(O(C(F))) = F



4 oximoron: Clear Obscure Code Implementation

oximoron is written in Scheme6, a Lisp variant. The code, given in Appendix A7,
de�nes a macro weak-oximoronize implementing F and a macro oximoronize

implementing C.
The macro call calls a (possibly obfuscated)O(C(F)) with arguments (false, x)

to get a (possibly obfuscated) O(F)← O(C(F))(false, x).
The function Dn is implemented in three steps:

� unobfuscate retrieves C(F) from a (possibly obfuscated) O(C(F)).
� repair alters the environment to replace a (possibly obfuscated) O(C(F))
by the original C(F).

� Finally, get-original-code extracts F from C(F).

In other words, the defender and the attacker (obfuscator) perform the fol-
lowing sequence of operations:

code to protect
↓

The Attacker ← C(F)←
�� ��‖oximoronize‖ ← F ←

�� ��‖weak-oximoronize‖
↓

A := O(C(F)) →
�� ��‖unobfuscate‖ → C(F) →

�� ��‖repair‖ → A := C(F)
↓�� ��‖get-original-code‖ → F = Dn(O(C(F)))

5 Further Research

A very interesting challenge would be to design nontrivial functionality-preserving8

programs and obfuscators. Letting π be a nontrivial property π : F → {true, false},
we de�ne Oπ as a functionality-preserving obfuscator with respect to property π if
π(Oπ(F)) = π(F).

For instance, a functionality-preserving Quine would be a code Q such that Oπ(Q)
prints Oπ(Q). In this example, the property π(F) is the answer to the question "Is F
a Quine?" (instead of the question "Is F a speci�c Quine?").

Functionality-preserving obfuscation generalizes classical (function-preserving) ob-
fuscation because in a classical obfuscator, π attempts to answer a question relating to
the mathematical function F (encoded in the program F) and not to the actual code
of F (that computes F ).

6 We use the Racket platform (racket-lang.org), a descendant from Scheme and a
programming language research platform.

7 The code can also be downloaded from http://pablo.rauzy.name/files/

oximoron.zip
8 Rather than function-preserving.



References

1. B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan and K.
Yang, On the (Im)possibility of Obfuscating Programs, Advances in Cryptology
- crypto`01, vol. 2139 of Lecture Notes in Computer Science, pp. 1�18, 2001.
Springer-Verlag

2. J. Burger, D. Brill and F. Machi, Self-reproducing programs, Byte, volume 5, August
1980, pp. 74�75.

3. N. Cutland, Computability: An introduction to recursive function theory, Cam-
bridge University Press, pp. 202�204, 1980.

4. D. Ghosh, R. Sharman, H. Rao, S. Upadhyaya, Self-healing systems � survey and
synthesis, Decision Support Systems 42 (2007) pp. 2164-�2185

5. D. Hofstadter, Godel, Escher, and Bach: An eternal golden braid, Basic Books, Inc.
New York, pp. 498�504.

6. A. Amarilli, S. Müller, D. Naccache, D. Page, P. Rauzy and M. Tunstall, Can Code

Polymorphism Limit Information Leakage?, Information Security Theory and Prac-
tice. Security and Privacy of Mobile Devices in Wireless Communication - 5th ifip

wg 11.2 International Workshop, wistp'11, vol. 6633 of Lecture Notes in Computer
Science, pp. 1�21, 2011. Springer-Verlag.



A The Source Code

(module oximoron racket/base

;; The name oximoron come from "oxymoron", because we can have clear
;; obscure code (clarifiable obfuscated code).

(define-syntax-rule (weak-oximoronize function)
#; "weak oximoron"
'(lambda (unobfuscate? . args)

(if unobfuscate?
'function
(apply function args))))

(define-syntax-rule (oximoronize function)
#; "strong oximoronize using quine+payload (like PASTIS but next-gen)"
'(lambda (unobfuscate? . args)

(define (Q expr)
`(lambda (unobfuscate? . args)

,@expr
(if unobfuscate?

(Q '(,@expr))
(apply function args))))

(if unobfuscate?
(Q '((define (Q expr)

`(lambda (unobfuscate? . args)
,@expr
(if unobfuscate?

(Q '(,@expr))
(apply function args))))))

(apply function args))))

(define-syntax-rule (call oximoron args ...)
#; "simulate classic function call"
(oximoron #f args ...))

(define-syntax repair
#; "repair the oximoron"
(syntax-rules ()

([_ oximoron]
(set! oximoron (eval (oximoron #t))))

([_ oximoron level]
(let loop ([n level])

(cond
([> n 0]
(repair oximoron)
(loop (sub1 n))))))))

(define-syntax unobfuscate
#; "return the oximoron code"
(syntax-rules ()

([_ oximoron]
(oximoron #t))

([_ oximoron level]
(let loop ([n level] [oxi oximoron])

(cond
([zero? n] (unobfuscate oxi))
([> n 0]
(loop (sub1 n) (eval (unobfuscate oxi)))))))))

(define (get-original-code oximoron [level 0])
#; "get the original function code (before oximoronization)"
(cadr (cadddr (cadddr (unobfuscate oximoron level)))))

)



B A repl Session

Here is a repl9 session demonstrating oximoron's usage. The repl session shows that
the obfuscated version of the oximoronized fib contains an obvious copy of the unob-
fuscated fib which at a �rst glance may look as cheating! A careful look into the code
reveals that the copy of the unobfuscated code is a quoted literal data value injected
into the oximoronized fib to allow later recovery. If the obfuscator alters these literal
data values, this will alter the computed function rather than the way in which it is
computed (and will hence contradict the way in which obfuscation is de�ned � i.e. this
would result in a de�nition-incompliant obfuscator modifying rather than re-writing

its input).

By a way of analogy, in the movie RoboCop, the cyborg RoboCop obeys by 4 = 3+1
directives: serve the public trust, protect the innocent, uphold the law and a classi�ed
fourth directive that prevents RoboCop from arresting or harming any senior executive
of the mega-corporation ocp. As the movie ends, the bad character, who is an ocp

executive, grabs a gun and takes the president hostage. While RoboCop recognizes a
violation of directives 2 and 3 he cannot intervene by virtue of directive 4. Here as
well, whilst the obfuscator may recognize the original code in the literal data value it
cannot intervene precisely because... it is a obfuscator!

> (oximoronize (lambda (arg)
(let fib ([n arg])

(if (< n 2)
n
(+ (fib (- n 1)) (fib (- n 2)))))))

'(lambda (unobfuscate? . args)

(define (Q expr)

`(lambda (unobfuscate? . args)

,@expr

(if unobfuscate?

(Q '(,@expr))

(apply

(lambda (arg)

(let fib ((n arg))

(if (< n 2) n (+ (fib (- n 1)) (fib (- n 2))))))

args))))

(if unobfuscate?

(Q

'((define (Q expr)

`(lambda (unobfuscate? . args)

,@expr

(if unobfuscate?

(Q '(,@expr))

(apply

(lambda (arg)

(let fib ((n arg))

(if (< n 2) n (+ (fib (- n 1)) (fib (- n 2))))))

args))))))

(apply

(lambda (arg)

(let fib ((n arg)) (if (< n 2) n (+ (fib (- n 1)) (fib (- n 2))))))

args)))

> ; let's define an obfuscated version of fib:
> (define fib (lambda (__ . _)

(define (Q --)

9 Read-Eval-Print Loop



`(lambda (_ . __)
,@--
(if _

(Q '(,@--))
(apply
(lambda (_____)

(sleep 3)
(let _-_ ((_ _____))

(if (< _ 2) _ (+ (_-_ (- _ 1)) (_-_ (- _ 2))))))
__))))

(if __
(Q
'((define (Q expr)

`(lambda (unobfuscate? . args)
,@expr
(if unobfuscate?

(Q '(,@expr))
(apply
(lambda (arg)

(let fib ((n arg))
(if (< n 2) n (+ (fib (- n 1)) (fib (- n 2))))))

args))))))
(apply
(lambda (_)

(sleep 5)
(let -_ ((__- _))

(if (< __- 2) __- (+ (-_ (- __- 1)) (-_ (- __- 2))))))
_))))

> (time (call fib 10))
cpu time: 4 real time: 5002 gc time: 0

55

> (unobfuscate fib) ; one level unobfuscation
'(lambda (_ . __)

(define (Q expr)

`(lambda (unobfuscate? . args)

,@expr

(if unobfuscate?

(Q '(,@expr))

(apply

(lambda (arg)

(let fib ((n arg))

(if (< n 2) n (+ (fib (- n 1)) (fib (- n 2))))))

args))))

(if _

(Q

'((define (Q expr)

`(lambda (unobfuscate? . args)

,@expr

(if unobfuscate?

(Q '(,@expr))

(apply

(lambda (arg)

(let fib ((n arg))

(if (< n 2) n (+ (fib (- n 1)) (fib (- n 2))))))

args))))))

(apply

(lambda (_____)

(sleep 3)

(let _-_ ((_ _____)) (if (< _ 2) _ (+ (_-_ (- _ 1)) (_-_ (- _ 2))))))

__)))

> (unobfuscate fib 2) ; two level unobfuscation
'(lambda (unobfuscate? . args)

(define (Q expr)

`(lambda (unobfuscate? . args)

,@expr

(if unobfuscate?

(Q '(,@expr))

(apply



(lambda (arg)

(let fib ((n arg))

(if (< n 2) n (+ (fib (- n 1)) (fib (- n 2))))))

args))))

(if unobfuscate?

(Q

'((define (Q expr)

`(lambda (unobfuscate? . args)

,@expr

(if unobfuscate?

(Q '(,@expr))

(apply

(lambda (arg)

(let fib ((n arg))

(if (< n 2) n (+ (fib (- n 1)) (fib (- n 2))))))

args))))))

(apply

(lambda (arg)

(let fib ((n arg)) (if (< n 2) n (+ (fib (- n 1)) (fib (- n 2))))))

args)))

> ; we recognize our oximoronized version of fib.
> (get-original-code fib 2)
'(lambda (arg)

(let fib ((n arg)) (if (< n 2) n (+ (fib (- n 1)) (fib (- n 2))))))

> (repair fib 2) ; two level reparation
> (time (call fib 10))
cpu time: 0 real time: 1 gc time: 0

55

> ; if we would have called (repair fib) instead of (repair fib 2)
> ; (call fib 10) ``real time'' would have taken 3 more seconds.


